Answer:
B. the products have a smaller number of available energy microstates than the reactants.
Answer:
At equilibrium, the concentration of the reactants will be greater than the concentration of the products. This does not depend on the initial concentrations of the reactants and products.
Explanation:
The value of Kc gives us an idea of the extent of the reaction. A big Kc (Kc > 1) means that in the equilibrium there are more products than reactants, and the opposite happens for a small Kc (Kc < 1). The equilibrium is reached no matter what the initial concentrations are.
The value of the equilibrium constant is relatively SMALL; therefore, the concentration of reactants will be GREATER THAN the concentration of products. This result is INDEPENDENT OF the initial concentration of the reactants and products.
This year course engages students in becoming skilled readers of prose written in a variety of periods, disciplines, and
rhetorical contexts and in becoming skilled writers who compose for a variety of purposes. More immediately, the course
prepares the students to perform satisfactorily on the A.P. Examination in Language and Composition given in the spring.
Both their writing and their reading should make students aware of the interactions among a writer’s purposes, audience
expectations, and subjects as well as the way generic conventions and the resources of language contribute to effectiveness
in writing. Students will learn and practice the expository, analytical, and argumentative writing that forms the basis of
academic and professional writing; they will learn to read complex texts with understanding and to write prose of
sufficient richness and complexity to communicate effectively with mature readers. Readings will be selected primarily,
but not exclusively, from American writers. Students who enroll in the class will take the AP examination.
D is the correct answer... if u need in depth let me know
<u>Answer:</u>
211.9 J
<u>Explanation:</u>
The molecules of water release heat during the transition of water vapor to liquid water, but the temperature of the water does not change with it.
The amount of heat released can be represented by the formula:

where
= heat energy,
= mass of water and
= latent heat of evaporation.
The latent heat of evaporation for water is
and the mass of the water is
.
The amount of heat released in this process is:
211.9 J