Answer: 0.0180701 s
Explanation:
Given the following :
Length of string (L) = 10 m
Weight of string (W) = 0.32 N
Weight attached to lower end = 1kN = 1×10^3
Using the relation:
Time (t) = √ (weight of string * Length) / weight attached to lower end * acceleration due to gravity
g = acceleration due to gravity = 9.8m/s^2
Weight of string = 0.32N
Time(t) = √ (0.32 * 10) / [(1*10^3) * (9.8)]
Time = √3.2 / 9800
= √0.0003265
= 0.0180701s
To solve this problem it is necessary to apply the kinematic equations of motion and Hook's law.
By Hook's law we know that force is defined as,

Where,
k = spring constant
x = Displacement change
PART A) For the case of the spring constant we can use the above equation and clear k so that




Therefore the spring constant for each one is 11876.92/2 = 5933.46N/m
PART B) In the case of speed we can obtain it through the period, which is given by

Re-arrange to find \omega,



Then through angular kinematic equations where angular velocity is given as a function of mass and spring constant we have to




Therefore the mass of the trailer is 4093.55Kg
PART C) The frequency by definition is inversely to the period therefore



Therefore the frequency of the oscillation is 0.4672 Hz
PART D) The time it takes to make the route 10 times would be 10 times the period, that is



Therefore the total time it takes for the trailer to bounce up and down 10 times is 21.4s
Answer:
High speed optical communication technology
To be able to communicate from the space to the earth and from earth to space is one of the most essential features required during space exploration.
Explanation:
Space exploration involves going into the space, beyond the earth's atmosphere. Landing on other planets and studying their details, going into deeper space beyond the planets to discover new cosmic events or structures is all a part of space exploration.
The key to analyse the studies and observations is being able to communicate the data collected, photos taken etc to the launch centers or space centers on earth. The space centers on earth should also be able to communicate with the persons or the satellites in space.
This is made possible using the optical communication technology which involves the use of optical fibers, lasers etc, since high speeds are more efficient during communication
Answer: metals.
Justification:
There are 118 elements which you can find in the periodic table ordered by atomic number. Those elements my be classified into metals, non-metals and metalloids.
The metals are placed on the left side of the periodic table. The metals share the properties of luster, conductivity and flexibility.
The properties of non-metals (which are on the right side of the periodic table) are opposite to those of metals: opaque, low conductivity and brittle.
Metalloids have in between properties.
Copper, for example is a metal: it has luster, is flexible and is highly conductive of the electricity (and temperature).