Momentum = m • v
Original momentum = m • 10 m/s north
Final momentum = m • 15 m/s north
Change = m • (15 - 10) m/s north
Change = m • +5 m/s north
Change = +60 kg-m/s north
Answer:
Im doing edge too rn-
Explanation:
Can you tell me the drop down options
Answer:
Young's modulus for the rope material is 20.8 MPa.
Explanation:
The Young's modulus is given by:

Where:
F: is the force applied on the wire
L₀: is the initial length of the wire = 3.1 m
A: is the cross-section area of the wire
ΔL: is the change in the length = 0.17 m
The cross-section area of the wire is given by the area of a circle:

Now we need to find the force applied on the wire. Since the wire is lifting an object, the force is equal to the tension of the wire as follows:

Where:
: is the tension of the wire
: is the weigh of the object = mg
m: is the mass of the object = 1700 kg
g: is the acceleration due to gravity = 9.81 m/s²

Hence, the Young's modulus is:
Therefore, Young's modulus for the rope material is 20.8 MPa.
I hope it helps you!
C) because you could get hurt if certain items fall in it and you are in water
If the lightbulb A in the circuit shown in the image burned out, the path for the current to flow is disrupted because one of its terminals is connected direct to the source. So, there will be no current through the lightbulbs B, C, and D, and they will turn off. Similarly it will happen, if the lightbulb D burned out.
If the lightbulb B burned out the current will continue circulating through the lightbulbs A, C, and D, because lightbulb B is connected in parallel. Similarly it will happen, if the lightbulb C burned out.