Complete Question:
A hollow cylinder with an inner radius of 4.0mm and an outer radius of 30mm conducts a 3.0-A current flowing parallel to the axis of the cylinder. If the current density is uniform throughout the wire, what is the magnitude of the magnetic field at a point 12mm from its center?
Answer:
The magnitude of the magnetic field = 7.24 μT
Explanation:
Inner radius, a = 4.0 mm = 0.004 m
Outer radius, b = 30 mm = 0.03 m
Radius, r = 12 mm = 0.012 m
let h² = b² - a²
h² = 0.03² - 0.004²
h² = 0.000884
Let d² = r² - a²
d² = 0.012² - 0.004²
d² = 0.000128
Current I = 3A
μ = 4π * 10⁻⁷
The magnitude of the magnetic field is given by:

B = 7.24 * 10⁻⁶T
B = 7.24 μT
Answer:
The acceleration of the ball is 
Explanation:
From the question we are told that
The maximum height the ball reachs is 
The horizontal component of the initial velocity of the ball is
The vertical component of the initial velocity of the ball is 
The vertically motion of the ball can be mathematically represented as

Here the final velocity at the maximum height is zero so 
Making the acceleration
the subject we have

substituting values


The negative sign shows that the direction of the acceleration is in the negative y-axis