Answer:
Distillation will generate the most cyclohexene.
Explanation:
Let us assume following attached reaction for the synthesis of cyclohexene from cyclohexanol which attains equilibrium after certain time.
As shown in figure the cyclohexanol upon treatment with phosphoric acid undergoes dehydration reaction (removal of water) and produces cyclohexene. On the other hand cyclohexene reacts with water (hydration reaction) and produces cyclohexanol.
Now, if this reaction is allowed in a single flask it will attain equilibrium and will not generate the cyclohexene in high quantity. On the other hand if we apply <em>Le Chatelier's principle</em> ( <u><em>removal of product moves the equilibrium in right direction</em></u>) and distillate cyclohexene (boiling the cyclohexene to convert it into vapors and then collect it after condensation) will move the reaction in forward direction and will allow us to generate cyclohexene in high amounts.
Barium Chloride
Aluminum Iodide
Lithium Phosphide
Sodium Nitride
Potassium Sulfide
Aluminum Oxide
Sodium Oxide
Rubidium Bromide
Calcium Phosphide
hope this helps for the names
The balanced reaction is:
N2 + 3H2 = 2NH3
We are given the amount of the product to be produced.This will be the starting point of our calculations. We use the ideal gas equation to find for the number of moles.
<span>
n = PV / RT = 1.00(.520 L) / (0.08206 atm L/mol K ) 273 K
n= 0.0232 mol NH3
</span>0.0232 mol NH3 (1 mol N2 / 2 mol NH3) = 0.0116 mol N2
<span>Therefore, the correct answer is A.</span>
Answer:
230hz
Explanation:
Hello,
To solve this question, we gave to use the relationship between velocity-frequency-wavelength to find the frequency in this question.
V = Fλ
V = velocity or speed of the wave
F = frequency of the wave
λ = wavelength of the wave
Data;
V = 414m/s
λ = 1.8m
f = ?
V = fλ
f = v/λ
f = 414/1.8
f = 230hz
The frequency of the wave is 230hz