M = 30 g = 0.03 kg, the mass of the bullet
v = 500 m/s, the velocity of the bullet
By definition, the KE (kinetic energy) of the bullet is
KE = (1/2)*m*v²
= 0.5*(0.03 kg)*(500 m/s)² = 3750 J
Because the bullet comes to rest, the change in mechanical energy is 3750 J.
The work done by the wall to stop the bullet in 12 cm is
W = (1/2)*(F N)*(0.12 m) = 0.06F J
If energy losses in the form of heat or sound waves are ignored, then
W = KE.
That is,
0.06F = 3750
F = 62500 N = 62.5 kN
Answer:
(a) 3750 J
(b) 62.5 kN
I'd say diffraction since sound waves can bend around objects like corners. Let's say you're in the hallway and you can hear sound coming from a door. The sound waves diffract around the door and spread out into the hallway, making it possible for you to hear.
Also, you can hear it before you see it because light waves are shorter than sound waves and hardly diffract around doors.
It would last as long as the applied force continued, or until the accelerating object hit something.
The work function is what we call the minimum energy that is required by an electron to leave the metal target in the photoelectric effect.
Answer:
IGNEOUS ROCKS
Explanation: Igneous rocks are those rocks that solidify from magma.
Igneous rock is divided into two ,they are:
1. Intrusive
Igneous rocks crystallized belowearth"s crust. Its cooling material is called lava.
2 Extrusive igneous rock is also known as known as volcanic rocks