To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as

Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,

where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that



Replacing the previous equation with our values we have,




The tangential velocity then would be,



Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

Replacing with our values and re-arrange to find 



That is equal in revolution to

The linear displacement of the system is,



Ek = 1/2 mv^2
9 × 10^4 = 1/2 × 800 × v^2
9 × 10^4/400 = 400 v^2 / 400
9 × 10^4/400 = v^2
√225 = v
15 ms⁻¹ = v
That's the only way I know how to work it out
I think in this case velocity and speed would be considered the same because me
s = d/t and v=d/t
one is distance travelled and the other is displacement of a body
Answer:
i think it is iron
Explanation:
its the only one that makes sense to me
Answer:
The same amount of energy is required to either stretch or compress the spring.
Explanation:
The amount of energy required to stretch or compress a spring is equal to the elastic potential energy stored by the spring:

where
k is the spring constant
is the stretch/compression of the spring
In the first case, the spring is stretched from x=0 to x=d, so

and the amount of energy required is

In the second case, the spring is compressed from x=0 to x=-d, so

and the amount of energy required is

so we see that the amount of energy required is the same.