We have the value of
Total energy produced in the chemical reaction=653 550 KJ
Time needed=142.3min
To calculate the rate of energy transfer, that is the amount of energy produced per minute.
Rate of energy transfer=
=
=4592.76 KJ min⁻¹
So, the rate of energy transfer is 4592.76 KJ min⁻¹.
Answer:
65.08 g.
Explanation:
- For the reaction, the balanced equation is:
<em>2AlCl₃ + 3Br₂ → 2AlBr₃ + 3Cl₂,</em>
2.0 mole of AlCl₃ reacts with 3.0 mole of Br₂ to produce 2.0 mole of AlBr₃ and 3.0 mole of Cl₂.
- Firstly, we need to calculate the no. of moles of 36.2 grams of AlCl₃:
<em>n = mass/molar mass</em> = (36.2 g)/(133.34 g/mol) = <em>0.2715 mol.</em>
<u><em>Using cross multiplication:</em></u>
2.0 mole of AlCl₃ reacts with → 3.0 mole of Br₂, from the stichiometry.
0.2715 mol of AlCl₃ reacts with → ??? mole of Br₂.
∴ The no. of moles of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = (0.2715 mol)(3.0 mole)/(2.0 mole) = 0.4072 mol.
<em>∴ The mass of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = no. of moles of Br₂ x molar mass</em> = (0.4072 mol)(159.808 g/mol
) = <em>65.08 g.</em>
I believe it's 6789 times 10^4. I could be wrong, due to the fact that I don't remember what's the definition of the scientific notion. I hope this helps, or at least gives you an idea! :D
Answer:
a. Oxygen gas is limiting
Explanation:
hydrogen gas and oxygen gas are reacted to form water
2H₂ + O₂ → 2H₂O
the above balanced equation shows that 2 moles of H₂ is required for 1 mole of O₂
Given equal masses of H₂ and O₂
assuming 'x' gm for each, no. of moles of each gas =
no. of moles of H₂ = x/2 = 0.5x moles
no.of moles of O₂ = x/32 = 0.031x moles
This shows that no. of moles of O₂ is very less so O₂ will become the limiting reagent.