Answer : The molarity after a reaction time of 5.00 days is, 0.109 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken = 5.00 days
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.110 M
Now put all the given values in above equation, we get:
![9.7\times 10^{-6}=\frac{1}{5.00}\left (\frac{1}{[A]}-\frac{1}{(0.110)}\right)](https://tex.z-dn.net/?f=9.7%5Ctimes%2010%5E%7B-6%7D%3D%5Cfrac%7B1%7D%7B5.00%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.110%29%7D%5Cright%29)
![[A]=0.109M](https://tex.z-dn.net/?f=%5BA%5D%3D0.109M)
Hence, the molarity after a reaction time of 5.00 days is, 0.109 M
It will be:
b. Alkyne* series
* You have done a spelling mistake here. It will be "Alkene" not "Alkyne".
Answer:
C) Q < K, reaction will make more products
Explanation:
- 1/8 S8(s) + 3 F2(g) ↔ SF6(g)
∴ Kc = 0.425 = [ SF6 ] / [ F2 ]³
∴ Q = [ SF6 ] / [ F2 ]³
∴ [ SF6 ] = 2 mol/L
∴ [ F2 ] = 2 mol/L
⇒ Q = ( 2 ) / ( 2³)
⇒ Q = 0.25
⇒ Q < K, reaction will make more products