Answer:
The rock's final speed at the required altitude will be 42.24 m/s.
Explanation:
Let's start by finding the initial vertical speed.
Vertical Speed = 1.61 * Sin (53.2°)
Vertical Speed = 0.8 m/s
We want to know the speed of the rock when it is at an altitude of 91 km.
The total displacement of the rock from its starting position will thus be equal to -91 km
We can use this in the following equation:


t = 4.3918 seconds
Thus it takes 4.3918 seconds to reach the required altitude. We can now find the speed as follows:



Thus the rock's final speed at the required altitude will be 42.24 m/s.
Fist one is a cylinder
the second, i believe is a sphere
the third is a rectangular prism
and the last is the same as the first, a cylinder
Asteroids are primarily found in an asteroid belt
Answer:
100cm
Explanation:
Since the eyes are 6 cm below the top of her head, the point of incidence of the ray must be
200cm-3cm=197cm
Since the eyes are 194 cm from her feet, the point of incidence of this ray must be
194cm/2=97cm
So the lower edge of the mirror must be 97 cm from the ground and the vertical dimension of the mirror must be 197 cm - 97 cm = 100 cm, which is half the height of the person.