Answer:
Final molarity of iodide ion C(I-) = 0.0143M
Explanation:
n = (m(FeI(2)))/(M(FeI(2))
Molar mass of FeI(3) = 55.85+(127 x 2) = 309.85g/mol
So n = 0.981/309.85 = 0.0031 mol
V(solution) = 150mL = 0.15L
C(AgNO3) = 35mM = 0.035M = 0.035m/L
n(AgNO3) = C(AgNO3) x V(solution)
= 0.035 x 0.15 = 0.00525 mol
(AgNO3) + FeI(3) = AgI(3) + FeNO3
So, n(FeI(3)) excess = 0.00525 - 0.0031 = 0.00215mol
C(I-) = C(FeI(3)) = [n(FeI(3)) excess]/ [V(solution)] = 0.00215/0.15 = 0.0143mol/L or 0.0143M
<h2>Answer </h2>
Matter
<u>Explanation </u>
A matter has distinct properties and composition that never vary. The matter is anything which possesses mass and occupies space. The matter has different characteristics and a distribution that does not change from unit to unit. Materials which cannot be disintegrated into simpler materials. Each is made of only one kind of atom in subatomic level. For example, a chair, table, and similar everything that has mass and occupies space is matter.
<span> Greenhouse gases were not historically present in the atmosphere.</span>
Answer:-
Alpha decay
Explanation:-
Uranium 238 has atomic number 92 and mass number 238.
Thorium 234 has atomic number 90 and mass number 234.
So, the change in atomic number as uranium 238 disintegrates into thorium234 = 92 – 90 = 2
So, the change in mass number as uranium 238 disintegrates into thorium234= 238 – 234 = 4
We know that when an alpha particle is emitted, the mass number decreases by 4 and the atomic number decreases by 2.
So when an atom of uranium 238 undergoes radioactive decay to form an atom of thorium-234, alpha decay has occurred.