Answer:
Cp= 0.44 J/g.C
This is heat capacity of metal.
Explanation:
From energy conservation
Heat lost by metal = Heat gain by water +Heat gain by calorimeter
Because here temperature of metal is high that is why it loose the heat.The temperature of water and calorimeter is low that is why they gain the heat.
final temperature is T= 30.5 C
We know that sensible heat transfer given as
Q= m Cp ΔT
m=Mass
Cp=Specific heat capacity
ΔT=Temperature difference
By putting the values
55 x Cp ( 99.5 - 30.5) = 40 x 4.184 ( 30.5- 21 ) + 10 x ( 30.5 - 21)
Cp ( 99 .5- 30.5) = 30.65
Cp= 0.44 J/g.C
This is heat capacity of metal.
Explanation:
Here is the complete question i guess. The jet plane travels along the vertical parabolic path defined by y = 0.4x². when it is at point A it has speed of 200 m/s, which is increasing at the rate .8 m/s^2. Determine the magnitude of acceleration of the plane when it is at point A.
→ The tangential component of acceleration is rate of increase in the speed of plane so,

→ Now we have to find out the radius of curvature at point A which is 5 Km (from the figure).
dy/dx = d(0.4x²)/dx
= 0.8x
Take the derivative again,
d²y/dx² = d(0.8x)/dx
= 0.8
at x= 5 Km
dy/dx = 0.8(5)
= 4
![p = \frac{[1+ (\frac{dy}{dx})^{2}]^{\frac{3}{2} } }{\frac{d^{2y} }{dx^{2} } }](https://tex.z-dn.net/?f=p%20%3D%20%5Cfrac%7B%5B1%2B%20%28%5Cfrac%7Bdy%7D%7Bdx%7D%29%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%20%7D%7B%5Cfrac%7Bd%5E%7B2y%7D%20%7D%7Bdx%5E%7B2%7D%20%7D%20%7D)
now insert the values,
![p = \frac{[1+(4)^{2}]^{\frac{3}{2} } }{0.8} = 87.62 km](https://tex.z-dn.net/?f=p%20%3D%20%5Cfrac%7B%5B1%2B%284%29%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%7D%7B0.8%7D%20%20%3D%2087.62%20km)
→ Now the normal component of acceleration is given by

= (200)²/(87.6×10³)
aₙ = 0.457 m/s²
→ Now the total acceleration is,
![a = [(a_{t})^{2} +(a_{n} )^{2} ]^{0.5}](https://tex.z-dn.net/?f=a%20%3D%20%5B%28a_%7Bt%7D%29%5E%7B2%7D%20%2B%28a_%7Bn%7D%20%29%5E%7B2%7D%20%5D%5E%7B0.5%7D)
![a = [(0.8)^{2} + (0.457)^{2}]^{0.5}](https://tex.z-dn.net/?f=a%20%3D%20%5B%280.8%29%5E%7B2%7D%20%2B%20%280.457%29%5E%7B2%7D%5D%5E%7B0.5%7D)
a = 0.921 m/s²
Answer:
vrzjxuxuxjcckhcouvou
Explanation:
gghhjjokjjhghhrjxjxkyxygbjv
Answer:
just before landing the ground
Explanation:
Let the velocity of projection is u and the angle of projection is 30°.
Let T is the time of flight and R is the horizontal distance traveled. As there is no force acting in horizontal direction, so the horizontal velocity remains constant. Let the particle hits the ground with velocity v.
initial horizontal component of velocity, ux = u Cos 30
initial vertical component of velocity, uy = u Sin 30
Time of flight is given by

Final horizontal component of velocity, vx = ux = u Cos 30
Let vy is teh final vertical component of velocity.
Use first equation of motion
vy = uy - gT


vy = - u Sin 30
The magnitude of final velocity is given by


v = u
Thus, the velocity is same as it just reaches the ground.
Answer:
A) The continents and ocean basins undergo continuous change. Both are parts of lithospheric plates that move against each other. B) Divergent plate in Mid-Atlantic Ridge with material flowing into the ocean. C) A plate moved over a stationary site of magma upwelling "Hot Spot" and created a volcanic island chain over the time
Explanation:
A) The basic thought is, that instead of being permanent fixtures of the earth's surface, the continents and ocean basins undergo continuous change. Both are parts of lithospheric plates that move against each other, and in the process new crust is created at midoceanic ridges (spreading centers), and old crust is consumed at convergent plate boundaries (subduction zones).
B) There are basically three different types of plate boundaries:
Divergent boundaries -- where new crust is generated as the plates pull away from each other.
Convergent boundaries -- where crust is destroyed as one plate dives under another.
Transform boundaries -- where crust is neither produced nor destroyed as the plates slide horizontally past each other.
The best known of the divergent boundaries is the Mid-Atlantic Ridge. This submerged mountain range, which extends from the Arctic Ocean to beyond the southern tip of Africa, is but one segment of the global mid-ocean ridge system that encircles the Earth.
C) The linear arrangement of many seamounts indicates that they formed because the plate moved over a stationary site of magma upwelling, a so called mantle "Hot Spot". Seamounts are submarine volcanoes that may finally build above the water level, in which case they are called islands. If seamounts rise above sea level (due to buildup of material in a cone or upwelling mantle pushes up plate), they are subject to wave erosion and colonization by reefs, with both processes tending to create a flat top on the original volcanic cone.