Answer:
213 nA
2.13 mA
851e^-t μA
Explanation:
We have a pretty straightforward question here.
Ohms Law states that the current in an electric circuit is directly proportional to the voltage and inversely proportional to the resistance in the circuit. It is mathematically written as
V = IR, since we need I, we can write that
I = V/R
a) at V = 1 mV
I = (1 * 10^-3) / 4.7 * 10^3
I = 2.13 * 10^-7 A or 213 nA
b) at V = 10 V
I = 10 / 4.7 * 10^3
I = 0.00213 A or 2.13 mA
c) at V = 4e^-t
I = 4e^-t / 4.7 * 10^3
I = 0.000851e^-t A or 851e^-t μA
Answer:
The resistance is 0.124 ohm.
Explanation:
It is common for domestic electrical installations to use copper wire with a diameter of 2.05 mm. Determine the resistance of such a wire with a length of 24.0 m.
diameter, d = 2.05 mm
radius, r = 1.025 mm
Length, L = 24 m
resistivity of copper = 1.7 x 10^-8 ohm m
Let the resistance is R.

Answer:
The car traveled the distance before stopping is 90 m.
Explanation:
Given that,
Mass of automobile = 2000 kg
speed = 30 m/s
Braking force = 10000 N
For, The acceleration is
Using newton's formula

Where, f = force
m= mass
a = acceleration
Put the value of F and m into the formula

Negative sing shows the braking force.
It shows the direction of force is opposite of the motion.


For the distance,
Using third equation of motion

Where, v= final velocity
u = initial velocity
a = acceleration
s = stopping distance of car
Put the value in the equation


Hence, The car traveled the distance before stopping is 90 m.
Answer:
A) OA, AB, BC
B) 25m/s^2
C) see explanation
D) 25
E) Rest
Explanation:
From the Velocity time graph shown:
The positive slope = OA ; This is positive because, it is the point of uniform acceleration on the graph.
Constant slope = AB, the slope here is constant because, AB on the graph is the point of constant velocity.
-ve slope = BC
B) Acceleration of body in path OA.
Acceleration = change in Velocity / time
Acceleration = (150 - 0) / 6
Acceleration = 150/6 = 25m/s^2
C) Path AB is Parallel to the because it marks the period of constant velocity (that is Velocity does not increase or decrease during the time interval).
D) Length of BC
BC corresponds to the distance moved, that velocity / time
Velocity = 150 ; time = 6
Therefore Distance (BC) = 150/6 = 25
E.) Velocity =0 ; Hence body is at rest
Te direction of the magnetic force for the velocity of the proton in the
-ve y direction will be +ve z direction.
As we know that the right-hand rule is based on the relation of magnetic fields and the forces that they exert on moving charges.When a charged particle moves under a magnetic field, it exerts a force on the particle, which is not in the same direction but different than the direction of the magnetic field.Under the right-hand rule, if we point our pointer finger in the direction of the charged particle is moving and the middle finger is representing the direction of the magnetic field then our thumb depicts the direction of the magnetic force which is exerted on the charged particle.
So, we are given that the direction of the velocity of the proton is in the negative y direction and the direction of the magnetic field is in the positive x direction, so the magnetic force is acting in the positive z direction.
To know more about the right-hand rule refer to the link brainly.com/question/9750730?referrer=searchResults.
#SPJ4