Answer:

Explanation:
From the question we are told that:
Distance 
Angle 
Force 
Generally the equation for magnitude of the stabilizing component of the brachialis force is mathematically given by



Answer:
31.75 m/s
Explanation:
h = 41.7 m
Let the initial velocity of the second stone is u
Let the time taken to reach to the bottom by the first stone is t then the time taken by the second stone to reach the ground is t - 1.8.
For first stone:
Use second equation of motion

Here, u = 0, g = 9.8 m/s^2 and t be the time and h = 41.7
So, 41.7= 0 + 0.5 x 9.8 x t^2
41.7 = 4.9 t^2
t = 2.92 s ..... (1)
For second stone:
Use second equation of motion

Here, g = 9.8 m/s^2 and time taken is t - 1.8 = 2.92 - 1.8 = 1.12 s, h = 41.7 m and u be the initial velocity
.... (2)
By equation the equation (1) and (2), we get

u = 31.75 m/s
Answer:
Making a quick cut left to intercept a pass
Explanation:
It takes more energe to do than running
As we know that KE and PE is same at a given position
so we will have as a function of position given as

also the PE is given as function of position as

now it is given that
KE = PE
now we will have




so the position is 0.707 times of amplitude when KE and PE will be same
Part b)
KE of SHO at x = A/3
we can use the formula

now to find the fraction of kinetic energy



now since total energy is sum of KE and PE
so fraction of PE at the same position will be


John carry the heaviest load.
<h3>How to find out who is carrying the heavy load?</h3>
Write down given data from questions:
Board=510cm X 510mm.
Cylinder head with dimensions=43cm X 250mm.
Cylinder lies across the board 210cm from john.
Find out: Who is carry the heaviest load?
Calculation:
We assume that mass of cylinder head = x kg
Then weight=x x 9*81
W=9.81x Newton.
Weight per unit length= Weight/Total leanth
Weight per unit length= 9.81x/43
(w/l)=0.23x N/cm
From equation contition: 
(210+21.5)




Therefore 
To learn more about mass per unit length, refer to:
brainly.com/question/24180692
#SPJ9