Answer:
Explanation:
The processes are described on the image attached below. The isobaric process consists of an horizontal line, the adiabatic expansion is described by a polytropic curve:

Where:


Final pressure is:



Answer:
The bit take to reach its maximum speed of 8,42 x10^4 rad/s in an amount of 1.097 seconds.
Explanation:
ω1= 1.72x10^4 rad/sec
ω2= 5.42x10^4 rad/sec
ωmax= 8.42x10^4 rad/sec
θ= 1.72x10^4 rad

α=7.67 x10^4 rad/sec²
t= ωmax / α
t= 8.42 x10^4 rad/sec / 7.67 x10^4 rad/sec²
t=1.097 sec
Answer:
static coefficient = 0,203 & kinetic coefficient = 0,14
Explanation:
There are two (2) conditions, when the desk is about to move and when the desk is moving. In the attachements you can see the two free body diagram for each condition.
In the first condition, there is no movement and the force is 12 N, in the image we can see the total forces are equal to 0 and by the definition of the friction force we can get the static friction coefficient.
In the second condition there is movement in the direction of the force which is equal to 8 N, again by the definition of the friction force we can get the kinetic friction coefficient. Since the desk is moving with constant velocity there is not acceleration.
The moon has a small amount of gravity. Low tides mean the moon is not pulling on the water. High tides mean that the moon is pulling on the water.
Answer:
あなたのポイントを無駄にして申し訳ありませんが、あなたの質問がその言語を日本語にすることがわかりません