Producer, Primary consumers, Secondary consumers and Tertiary consumers.
Answer:
Mass = 36 g
Explanation:
Given data:
Mass of water formed = ?
Mass of hydrogen = 4.04 g
Mass of oxygen = 31.98 g
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen:
Number of moles = mass/molar mass
Number of moles = 4.04 g/ 2 g/mol
Number of moles = 2.02 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 31.98 g/ 32 g/mol
Number of moles = 1.0 mol
Now we will compare the moles of water with hydrogen and oxygen.
O₂ : H₂O
1 : 2
H₂ : H₂O
2 : 2
2.02 : 2.02
Number of moles of water formed by oxygen are less thus oxygen will limiting reactant.
Mass of water:
Mass = number of moles × molar mass
Mass = 2 mol × 18 g/mol
Mass = 36 g
Answer:
The order of reactivity towards electrophilic susbtitution is shown below:
a. anisole > ethylbenzene>benzene>chlorobenzene>nitrobenzene
b. p-cresol>p-xylene>toluene>benzene
c.Phenol>propylbenzene>benzene>benzoic acid
d.p-chloromethylbenzene>p-methylnitrobenzene> 2-chloro-1-methyl-4-nitrobenzene> 1-methyl-2,4-dinitrobenzene
Explanation:
Electron donating groups favor the electrophilic substitution reactions at ortho and para positions of the benzene ring.
For example: -OH, -OCH3, -NH2, Alkyl groups favor electrophilic aromatic substitution in benzene.
The -I (negative inductive effect) groups, electron-withdrawing groups deactivate the benzene ring towards electrophilic aromatic substitution.
Examples: -NO2, -SO3H, halide groups, Carboxylic acid groups, carbonyl gropus.
Answer:
1.atomic number
2.electron
3.element
4.atom
5.neutron
6.nucleus
7.proton
Explanation:
please like and Mark as brainliest