Answer:
Explanation:
The detailed steps and appropriate calculation with analysis is as shown in the attachment.
Answer:
B. The thickness of the heated region near the plate is increasing.
Explanation:
First we know that, a boundary layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. The fluid is often slower due to the effects of viscosity. Advection i.e the transfer of heat by the flow of liquid becomes less since the flow is slower, thereby the local heat transfer coefficient decreases.
From law of conduction, we observe that heat transfer rate will decrease based on a smaller rate of temperature, the thickness therefore increases while the local heat transfer coefficient decreases with distance.
Answer:
the heat transfer from the pipe will decrease when the insulation is taken off for r₂< ![r_{cr}](https://tex.z-dn.net/?f=r_%7Bcr%7D)
where;
r₂ = outer radius
= critical radius
Explanation:
Note that the critical radius of insulation depends on the thermal conductivity of the insulation k and the external convection heat transfer coefficient h .
![r_{cr} =\frac{k}{h}](https://tex.z-dn.net/?f=r_%7Bcr%7D%20%3D%5Cfrac%7Bk%7D%7Bh%7D)
The rate of heat transfer from the cylinder increases with the addition of insulation for outer radius less than critical radius (r₂<
) 0, and reaches a maximum when r₂ =
, and starts to decrease for r₂<
. Thus, insulating the pipe may actually increase the rate of heat transfer from the pipe instead of decreasing it when r₂<
.
Answer:
MOXIE is designed to generate up to 10 grams of oxygen per hour. This technology demonstration was designed to ensure the instrument survived the launch from Earth, a nearly seven-month journey through deep space, and touchdown with Perseverance on Feb