Answer:
Answer E.
For a collision to be completely elastic, there must be NO LOSS in kinetic energy.
We can go through each answer choice:
A. Since the ball rebounds at half the initial speed, there is a loss in kinetic energy. This is NOT an elastic collision.
B. A collision involving sticking is an example of a perfectly INELASTIC collision. This is NOT an elastic collision.
C. A reduced speed indicates that there is a loss of kinetic energy. This is NOT elastic.
D. The balls traveling at half the speed after the collision indicates a loss of kinetic energy, making this collision NOT elastic.
E. This collision indicates an exchange of velocities, characteristic of an elastic collision. We can prove this:
Let:
m = mass of each ball
v = velocity
We have the initial kinetic energy as:
KE = \frac{1}{2}mv^2 + 0 = \frac{1}{2}mv^2KE=21mv2+0=21mv2
And the final as:
KE = 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2KE=0+21mv2=21mv2
Answer : The final temperature of the copper is, 
Solution :
Formula used :

where,
Q = heat gained = 299 cal
m = mass of copper = 52 g
c = specific heat of copper =
= final temperature = ?
= initial temperature = 
Now put all the given values in the above formula, we get the final temperature of copper.


Therefore, the final temperature of the copper is, 
C(HClO) = 0,3 M.
<span>V(HClO) = 200 mL = 0,2 L.
n(HClO) = </span>c(HClO) · V(HClO).
n(HClO) = 0,06 mol.<span>
c(KClO</span>) =
0,2 M.
<span>V(KClO) = 0,3 L.
n(KClO) = 0,06 mol.
V(buffer solution) = 0,2 L + 0,3 L = 0,5 L.
ck</span>(HClO) = 0,06 mol ÷ 0,5 L = 0,12 M.
cs(KClO) = 0,06 mol ÷ 0,5 L = 0,12 M.<span>
Ka(HClO</span>) =
2,9·10⁻⁸.<span>
This is buffer solution, so use Henderson–Hasselbalch
equation:
pH = pKa + log(cs</span> ÷ ck).<span>
pH = -log(</span>2,9·10⁻⁸) + log(0,12 M ÷ 0,12 M).<span>
pH = 7,54 + 0.
pH = 7,54</span>
Answer:
The options are
a. occur inside organelles. b. start over continually. c. are part of the carbon cycle. d. allow energy to flow in ecosystems.
The answer is b. Start over continually
Explanation:
The two cycles involves a continuous process as long as the reactants are present under suitable conditions. The cycle happens all the time due to it being necessary to produce important products all the time for the body system.
A good example involves the existing Carbon dioxide and water reacting together to get converted into substance that could provide energy (ATP and NADH) such as Glucose.