Answer:
1456 N
Explanation:
Given that
Frequency of the piano, f = 27.5 Hz
Entire length of the string, l = 2 m
Mass of the piano, m = 400 g
Length of the vibrating section of the string, L = 1.9 m
Tension needed, T = ?
The formula for the tension is represented as
T = 4mL²f²/ l, where
T = tension
m = mass
L = length of vibrating part
F = frequency
l = length of the whole part
If we substitute and apply the values we have Fri. The question, we would have
T = (4 * 0.4 * 1.9² * 27.5²) / 2
T = 4368.1 / 2
T = 1456 N
Thus, we could conclude that the tension needed to tune the string properly is 1456 N
Just took the test and the answer is <span>C. 1,314,718.
</span>
False, applied force is when a person or an object pushes on another object
Answer:
7976 Pascals significant figure= 7.9*10^3
Explanation:
formula of hpg = height*density*gravitational energy
.80*10*997=7976 pascals
Does it have to be that exact word. cause it is just another term for psuedopodium