Answer:
a)V= 0.0827 m³
b)P=181.11 x 10² N/m²
Explanation:
Given that
m = 81.5 kg
Density ,ρ = 985 kg/m³
As we know that
Mass = Volume x Density
81.5 = V x 985
V= 0.0827 m³
The force exerted by weight = m g
F= m g= 81.5 x 10 = 815 N ( Take ,g= 10 m/s²)
Area ,A= 4.5 x 10⁻² m²
The Pressure P


P=181.11 x 10² N/m²
Neutrons don't have any charge
Answer:
<h2>82.94 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 28.8 × 2.88 = 82.944
We have the final answer as
<h3>82.94 N</h3>
Hope this helps you
Answer:
Sedimentary rocks are types of rock that are formed by the deposition and subsequent cementation of that material at the Earth's surface and within bodies of water. Deposition means that all the sediments, soil, and rocks are all compressed (tightly pressed into each other) and create sedimentary rocks.
I hope this helps! :)
Answer:
The kinetic energy of the ejected electrons increases.
Explanation:
As we know that electrons are only ejected from a metal surface if the frequency of the incident light increases the work function of the metal. If the frequency of the incident light is less than the work function of the metal no matter how intense the beam the electrons will not be ejected from the surface.
Using conservation of energy principle we have
If we increase the intensity of incident light the term on the LHS of the above equation increases this increase appears in the kinetic energy term in RHS of the equation since
remains constant.