As far as I know NONE.....
Explanation:
Sodium peroxide can be thermolyzed to give dioxygen gas...
N
a
2
O
2
(
s
)
+
Δ
→
N
a
2
O
(
s
)
+
1
2
O
2
(
g
)
↑
⏐
⏐
⏐
But with water, we simply get an acid base reaction....
N
a
2
O
2
(
s
)
+
2
H
2
O
(
l
)
→
2
N
a
O
H
(
a
q
)
+
H
2
O
2
(
a
q
)
...
When a substance goes from being a liquid to a gas it evaporates, or boils away. Think of boiled eggs.
Answer: An atom can be considered unstable in one of two ways. If it picks up or loses an electron, it becomes electrically charged and highly reactive. Such electrically charged atoms are known as ions. Instability can also occur in the nucleus when the number of protons and neutrons is unbalanced.
Explanation:
Answer:
At STP, 760mmHg or 1 atm and OK or 273 degrees celcius
Explanation:
The standard temperature and pressure is the temperature and pressure at which we have the molecules of a gas behaving as an ideal gas. At this temperature and pressure, it is expected that the gas exhibits some properties that make it behave like an ideal gas.
This temperature and pressure conform some certain properties on a gas molecule which make us say it is behaving like an ideal gas. Ordinarily at other temperatures and pressures, these properties are not obtainable
Take for instance, one mole of a gas at stp occupies a volume of 22.4L. This particular volume is not obtainable at other temperatures and pressures but at this particular temperature and pressure. One mole of a gas will occupy this said volume no matter its molar mass and constituent elements. This is because at this temperature and pressure, the gas is expected to behave like an ideal gas and thus exhibit the characteristics which are expected of an ideal gas
Answer:
The new volume of the balloon is 38.5 L
Explanation:
Step 1: Data given
Volume at the start = V1 = 35.0 L
Temperature at the start = T1 = 303 Kelvin
Volume by 3pm = TO BE DETERMINED
Temperature by 3pm = 333 Kelvin
<u>Step 2: </u>Calculate the new volume
Charles' gas law says
V1/T1 = V2/T2
V
1 is the initial volume and T1 is the initial temperature
V2 is the final volume and T2 is the final temperature
35 L / 303 Kelvin = V2 / 333 Kelvin
V2 = 35L * 333 Kelvin / 303 Kelvin
V2 = 38.47L ≈ 38.5 L
The new volume of the balloon is 38.5 L