If it is. DC, direct current reverse the polarity of power leads on the motor.
If it is a 3 phase ac alternating current, reverse any of the two of three leads.
Disconnect power before attempting.
Answer:
The amount of energy transferred to the water is 4.214 J
Explanation:
The given parameters are;
The mass of the object that drops = 5 kg
The height from which it drops = 86 mm (0.086 m)
The potential energy P.E. is given by the following formula
P.E = m·g·h
Where;
m = The mass of the object = 5 kg
g = The acceleration de to gravity = 9.8 m/s²
h = The height from which the object is dropped = 0.086 m
Therefore;
P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J
Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;
The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.
Answer:
wiwhwnwhwwbbwbwiwuwhwhehehewhehehheheheehehehehhehehwh
Explanation:
jwhwhwhwhwhwwhhahwhahahwh
Answer:
Your question has some missing information below is the missing information
Given that ( specific heat of fluid A = 1 kJ/kg K and specific heat of fluid B = 4 kJ/kg k )
answer : 300 kW , 95°c
Explanation:
Given data:
Fluid A ;
Temperature of Fluid ( Th1 ) = 420° C
mass flow rate (mh) = 1 kg/s
Fluid B :
Temperature ( Tc1) = 20° C
mass flow rate ( mc ) = 1 kg/s
effectiveness of heat exchanger = 75% = 0.75
<u>Determine the heat transfer rate and exit temperature of fluid</u> <u>B</u>
Cph = 1000 J/kgk
Cpc = 4000 J/Kgk
Given that the exit temperatures of both fluids are not given we will apply the NTU will be used to determine the heat transfer rate and exit temperature of fluid B
exit temp of fluid B = 95°C
heat transfer = 300 kW
attached below is a the detailed solution