Answer:

Explanation:
Previous concepts
Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =
MO, where MO is the moment of the force F about point O. The equation expressing the rate of change of angular momentum is this one:
MO = H˙ O
Principle of Angular Impulse and Momentum
The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

Solution to the problem
For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is
".
If we analyze the staritning point we see that the initial velocity can be founded like this:

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

](https://tex.z-dn.net/?f=0%2B%5Csum%20%5Cint_%7B0%7D%5E%7B4%7D%2020t%20%280.15m%29%20dt%20%3D0.46875%20%5Comega%20%2B%2030kg%5B%5Comega%280.15m%29%5D%280.15m%29)
And if we integrate the left part and we simplify the right part we have

And if we solve for
we got:

Answer:
import java.util.Scanner;
public class FindMatchValue {
public static void main (String [] args) {
Scanner scnr = new Scanner(System.in);
final int NUM_VALS = 4;
int[] userValues = new int[NUM_VALS];
int i;
int matchValue;
int numMatches = -99; // Assign numMatches with 0 before your for loop
matchValue = scnr.nextInt();
for (i = 0; i < userValues.length; ++i) {
userValues[i] = scnr.nextInt();
}
/* Your solution goes here */
numMatches = 0;
for (i = 0; i < userValues.length; ++i) {
if(userValues[i] == matchValue) {
numMatches++;
}
}
System.out.println("matchValue: " + matchValue + ", numMatches: " + numMatches);
}
}
Answer:
Aluminum
Explanation:
The best material to use when creating an electric fence would be Aluminum. Aluminum wiring is incredibly durable and can be easily obtained. Since aluminum is a non-magnetic metal its conducting capabilities far exceed other metallic options in the market and is also why companies choose aluminum for their high tension cable wiring. Aside from being more expensive than other feasible options its durability and conducting capabilities make it easily the best option.
Answer:
0.2 m/s
Explanation:
The velocity of a point on the edge of a disk rotating disk can be calculated as:

Where
is the angular velocity and r the radius of the disk. This leads to: