Answer:
n = 0.0814 mol
Explanation:
Given mass, m = 35.7g
The molar mass of Tin(IV) bromate, M = 438.33 g/mol
We need to find the number of moles of bromine. We know that,
No. of moles = given mass/molar mass
So,

So, there are 0.0814 moles of bromine in 35.7g of Tin(IV) bromate.
Three resonance structures can be drawn for the allyl cation while two resonance structures can be drawn for the amidate ion.
Sometimes, we cannot fully describe the bonding in a chemical specie using a single chemical structure. In such cases, we have to use a number of structures which cooperatively represent the actual bonding in the molecule. These structures are called resonance or canonical structures.
The resonance structures of the allyl cation and the amidate ion are shown in the images attached to this answer. These structures show the different bonding extremes in these organic ions.
Learn more: brainly.com/question/4933048
Answer:
0.414 mole (3 sig. figs.)
Explanation:
Given grams, moles = mass/formula weight
moles in 18.2g CO₂(g) = 18.2g/44g/mole = 0.413636364 mole (calc. ans.)
≅ 0.414 mole (3 sig. figs.)
Answer:
It's called Independent variable
Explanation:
....