Answer:
The velocity of water at the bottom, 
Given:
Height of water in the tank, h = 12.8 m
Gauge pressure of water, 
Solution:
Now,
Atmospheric pressue, 
At the top, the absolute pressure, 
Now, the pressure at the bottom will be equal to the atmopheric pressure, 
The velocity at the top,
, l;et the bottom velocity, be
.
Now, by Bernoulli's eqn:

where

Density of sea water, 



Answer:
d
Explanation:
d because a b c are energy equation not work
A) work = force * distance
mass is not a force, weight is, so we have to find the weight of the block.
Weight = mg
Weight = (220kg)(9.8)
Weight = 2156N
Work = 2156N * 3.10m
work = 6683.6J
b) Since he is holding the weights, it's not moving, therefore, he doesn't do any work
c) The answer is still the same amount of work when he lifted them.
d) The answer is no since when he let go the weight, he doesn't apply any force to the weight.
e) P = work/time
P = 6683.6J / 2.1s
P = 3182.67 watts
Answer:
1. drink lots of water
2. eat healthy breakfast
3. plan your meals
4. set a deadline
5. exercise at least 30 minutes a day even 10 minutes 3 times a day is good
6. eat fruits and vegetables
7. eat whole grains instead of white
8. get a good night's sleep
9. stay motivated
10. take time for mental health
Answer:
x₂=0.44m
Explanation:
First, we calculate the length the spring is stretch when the first block is hung from it:

Now, since the stretched spring is in equilibrium, we have that the spring restoring force must be equal to the weight of the block:

Solving for the spring constant k, we get:

Next, we use the same relationship, but for the second block, to find the value of the stretched length:

Finally, we sum this to the unstretched length to obtain the length of the spring:

In words, the length of the spring when the second block is hung from it, is 0.44m.