Answer:
T₂ =93.77 °C
Explanation:
Initial temperature ,T₁ =27°C= 273 +27 = 300 K
We know that
Absolute pressure = Gauge pressure + Atmospheric pressure
Initial pressure ,P₁ = 300+1=301 kPa
Final pressure ,P₂= 367+1 = 368 kPa
Lets take temperature=T₂
We know that ,If the volume of the gas is constant ,then we can say that


Now by putting the values in the above equation we get

The temperature in °C
T₂ = 366.77 - 273 °C
T₂ =93.77 °C
Answer:
The provided length of the vertical curve is satisfactory for the reconstruction design speed of 60 mi/h
Explanation:
The explanation is shown on the first uploaded image
Since this traffic flow has a jam density of 122 veh/km, the maximum flow is equal to 3,599 veh/hr.
<u>Given the following data:</u>
- Jam density = 122 veh/km.
<h3>How to calculate the
maximum flow.</h3>
According to Greenshield Model, maximum flow is given by this formula:

<u>Where:</u>
is the free flow speed.
is the Jam density.
In order to calculate the free flow speed, we would use this formula:

Substituting the parameters into the model, we have:

Max flow = 3,599 veh/hr.
Read more on traffic flow here: brainly.com/question/15236911
The answer is D I’m 90% sure