Answer:
232 J/K
Explanation:
The amount of heat gained by the air = the amount of heat lost by the tea.
q_air = -q_tea
q = -mCΔT
q = -(0.250 kg) (4184 J/kg/ºC) (20.0ºC − 85.0ºC)
q = 68,000 J
The change in entropy is:
dS = dQ/T
Since the room temperature is constant (isothermal):
ΔS = ΔQ/T
Plug in values (remember to use absolute temperature):
ΔS = (68,000 J) / (293 K)
ΔS = 232 J/K
It has to due with numbers so I would say the last one!
Answer:
The effect of lowering the condenser pressure on different parameters is explained below.
Explanation:
The simple ideal Rankine cycle is shown in figure.
Effect of lowering the condenser pressure on
(a). Pump work input :- By lowering the condenser pressure the pump work increased.
(b) Turbine work output :- By lowering the condenser pressure the turbine work increased.
(c). Heat supplied :- Heat supplied increases.
(d). Heat rejected :- The heat rejected may increased or decreased.
(e). Efficiency :- Cycle efficiency is increased.
(f). Moisture content at turbine exit :- Moisture content increases.
A billiard ball collides with a stationary identical billiard ball to make it move. If the collision is perfectly elastic, the first ball comes to rest after collision.
<h3>Why does the first ball comes to rest after collision ?</h3>
Let m be the mass of the two identical balls.
u1 = velocity before the collision of ball 1
u2 = 0 = velocity of second ball that is at rest
v1 and v2 are the velocities of the balls after the collision.
From the conservation of momentum,
∴ mu1 + mu2 = mv1 + mv2
∴ mu1 = mv1 + mv2
∴ u1 = v1 + v2
In an elastic collision, the kinetic energy of the system before and after collision remains same.

∴ 
∴ 
∴
₁
₂ = 0
- It is impossible for the mass to be zero.
- Because the second ball moves, velocity v2 cannot be zero.
- As a result, the velocity of the first ball, v1, is zero, indicating that it comes to rest after collision.
<h3>What is collision ?</h3>
An elastic collision is a collision between two bodies in which the total kinetic energy of the two bodies remains constant. There is no net transfer of kinetic energy into other forms such as heat, noise, or potential energy in an ideal, fully elastic collision.
Can learn more about elastic collision from brainly.com/question/12644900
#SPJ4