Answer
given,
ω₁ = 0 rev/s
ω₂ = 6 rev/s
t = 11 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
11 α = 6 - 0
= 0.545 rev/s²
The angular displacement
θ₁= ωi t + (1/2) α t²
θ₁= 0 + (1/2) (0.545)(11)^2
θ₁= 33 rev
case 2
ω₁ = 6 rev/s
ω₂ = 0 rev/s
t = 14 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
14 α = 0 - 6
= - 0.428 rev/s²
The angular displacement
θ₂= ωi t + (1/2) α t²
θ₂= 6 x 14 + (1/2) (-0.428)(14)^2
θ₂= 42 rev
total revolution in 25 s is equal to
θ = θ₁ + θ₂
θ = 33 + 42
θ = 75 rev
Applications of Gas Law in Real Life. A torch used to heat up the and rise the air temperature inside the balloon. This cause the air volume inside the balloon to increased and becoming less dense than the surrounding air. ... The air in the ears will change its volume then causes yours ears to pop due to the strain.
It was super heated to turn in to a liquid
Answer:
a

b

Explanation:
From the question we are told that
The spring constant is 
The maximum extension of the spring is 
The number of oscillation is 
The time taken is 
Generally the the angular speed of this oscillations is mathematically represented as

where T is the period which is mathematically represented as

substituting values


Thus


this angular speed can also be represented mathematically as

=> 
substituting values


In SHM (simple harmonic motion )the equation for velocity is mathematically represented as

The velocity is maximum when

=> 
=> 
=> 
12.... it helps to markout the location of ecah paddle on the wheel