Answer: 41.5 mL
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in L
Given : 59.4 g of
in 100 g of solution
moles of 
Volume of solution =
Now put all the given values in the formula of molality, we get

To calculate the volume of acid, we use the equation given by neutralisation reaction:

where,
are the molarity and volume of stock acid which is 
are the molarity and volume of dilute acid which is 
We are given:

Putting values in above equation, we get:

Thus 41.5 mL of the solution would be required to prepare 1550 mL of a .30M solution of the acid
I think the answer is A. breaks rocks apart.
Based on the data given, the molar mass of the gas is 165.5 g/mol while the molecular weight of the gas is 165.5 amu
<h3>How can molar mass of a gas be obtained from density, temperature and pressure?</h3>
The molar mass of a gas can be obtained from density, temperature and pressure using the formula below:
- molar mass = density × molar gas constant × temperature/pressure
Molar gas constant, R = R = 0.082 L.atm/mol/K.
Temperature = 150 °C = 423 K
Pressure = 785 torr = 1.033 atm
density = 4.93 g/L
molar mass of gas = 4.93 × 0.082 × 423/1.033
molar mass of gas = 165.5 g/mol
Then, molecular weight of the gas = 165.5 amu
Therefore, the molar mass of the gas is 165.5 g/mol while the molecular weight of the gas is 165.5 amu
Learn more about molar mass of a gas at: brainly.com/question/26215522
Answer:
The ideal gas law can be used in stoichiometry problems in which chemical reactions involve gases. Standard temperature and pressure (STP) are a useful set of benchmark conditions to compare other properties of gases. At STP, gases have a volume of 22.4 L per mole.
Comets are usually formed of ice and other suave debris, while asteroids typically contain metals.