Answer:
The pressure contribution from the heavy particles is 17.5 atm
Explanation:
According to Dalton's law of partial pressures, if there is a mixture of gases which do not react chemically together, then the total pressure exerted by the mixture is the sum of the partial pressures of the individual gases that make up the mixture.
In the simulation:
the pressure of the 50 light particles alone was determined to be 5.9 atm, the pressure of the 150 heavy particles alone was measured to be 17.5 atm,
the total pressure of the mixture of 150 heavy and 50 light particles was measured to be 23.4 atm
Total pressure = partial pressure of Heavy particles + partial pressure of light particles
23.4 atm = partial pressure of Heavy particles + 5.9 atm
Partial pressure of Heavy particles = (23.4 - 5.9) atm
Partial pressure of Heavy particles = 17.5 atm
Therefore, the pressure contribution from the heavy particles is 17.5 atm
Answer:
1 and 3.
Explanation:
The entropy measures the randomness of the system, as higher is it, as higher is the entropy. The randomness is associated with the movement and the arrangement of the molecules. Thus, if the molecules are moving faster and are more disorganized, the randomness is greater.
So, the entropy (S) of the phases increases by:
S solid < S liquid < S gases.
1. The substance is going from solid to gas, thus the entropy is increasing.
2. The substance is going from a disorganized way (the molecules of I are disorganized) to an organized way (the molecules join together to form I2), thus the entropy is decreasing.
3. The molecules go from an organized way (the atom are joined together) to a disorganized way, thus the entropy increases.
4. The ions are disorganized and react to form a more organized molecule, thus the entropy decreases.
Answer:
physical properties of gases, that is, pressure, volume, temperature, and amount of gas
Explanation:
Three major bitter compounds in whole wheat bread crumb were identified.
...
Apigenin-6-C-arabinoside-8-C-galactoside. ...
Apigenin-6-C-galactoside-8-C-arabinoside. ...
9,12,13-Trihydroxy-trans-10-octadecenoic acid (pinellic acid)
The change in temperature of the metal is 6.1°C. Details about change in temperature can be found below.
<h3>How to calculate change in temperature?</h3>
The change in temperature of a substance can be calculated by subtracting the initial temperature of the substance from the final temperature.
According to this question, a 25.0 g sample of metal at 16.0 °C is warmed to 22.1 °C by 259J of energy.
This means that the change in temperature of the metal can be calculated as:
∆T = 22.1°C - 16°C
∆T = 6.1°C
Therefore, the change in temperature of the metal is 6.1°C.
Learn more about change in temperature at: brainly.com/question/19051558
#SPJ1