Answer:
True
Explanation:
Atmospheric pressure reduces the amount of oxygen in the air, therefore leading to Hypoxia. Higher altitues contribute.
This problem is providing the length in inches of a rod and it is being required to convert it to centimeters. According to the following, the answer will be 43.7 cm:
<h3>Units conversion:</h3><h3 />
In science, we use units conversion to represent measurements in different types of units depending on a specific requirement. To do so, we use conversion factors based on equivalence statements, relating the required unit with the given one.
In this case, the equivalence statement between inches and centimeters is 2.54 cm = 1 in and we can use it to get the answer as shown below:

Learn more about units conversion: brainly.com/question/13016491
Answer:
Digestion take place in Fats.
<span>Answer: 100 ml
</span>
<span>Explanation:
1) Convert 1.38 g of Fe₂S₃ into number of moles, n
</span>i) Formula: n = mass in grass / molar mass
<span>
ii) molar mass of </span><span>Fe₂S₃ =2 x 55.8 g/mol + 3 x 32.1 g/mol = 207.9 g/mol
</span>
iii) n = 1.38 g / 207.9 g/mol = 0.00664 moles of <span>Fe₂S₃
</span>
<span>2) Use the percent yield to calculate the theoretical amount:
</span>
<span>65% = 0.65 = actual yield/ theoretical yield =>
</span>theoretical yield = actual yield / 0.65 = 0.00664 moles / 0.65 = 0.010 mol <span>Fe₂S₃</span><span>
3) Chemical equation:
</span>
<span> 3 Na₂S(aq) + 2 FeCl₃(aq) → Fe₂S₃(s) + 6 NaCl(aq)
4) Stoichiometrical mole ratios:
</span>
<span>3 mol Na₂S : 2 mol FeCl₃ : 1 mol Fe₂S₃ : 6 mol NaCl
5) Proportionality:
</span>2moles FeCl₃ / 1 mol Fe₂S₃ = x / 0.010 mol Fe₂S₃
<span>
=> x = 0.020 mol FeCl₃
6) convert 0.020 mol to volume
</span>
<span>i) Molarity formula: M = n / V
</span>
<span>ii) V = n / M = 0.020 mol / 0.2 M = 0.1 liter = 100 ml
</span>
Most of the carbon is put away in sedimentary carbonates and kerogens, with the rest being spread between the sea, the air, biomass, for example, plants and creatures, and petroleum products
<u>Explanation</u>:
- The carbon cycle is the procedure where carbon goes from the surrounding into living beings and to the Earth and then again goes into the air. Plants take carbon dioxide from the air and use it for food preparation. Creatures at that point eat the nourishment and carbon is put away in their bodies or discharged as CO2 through the breath.
-
Most of the carbon is put away in sedimentary carbonates and kerogens, with the rest being spread between the sea, the air, biomass, for example, plants and creatures, and petroleum products. This is known as carbon storage.
-
For instance, carbon, a fundamental component in natural particles, is preserved as it is moved from inorganic carbon in a biological system to natural atoms in living life forms of the biological system and back as inorganic carbon to the earth.