Answer:
0.0693M Fe
Explanation:
It is possible to quantify Fe in a sample using Mn as internal standard using response factor formula:
F = A(analyte)×C(std) / A(std)×C(analyte) <em>(1)</em>
Where A is area of analyte and std, and C is concentration.
Replacing with first values:
F = 1.05×2.00mg/mL / 1.00×2.50mg/mL
<em>F = 0.84</em>
In the unknown solution, concentration of Mn is:
13.5mg/mL × (1.00mL/6.00mL) = <em>2.25 mg Mn/mL</em>
Replacing in (1) with absorbances values and F value:
0.84 = 0.185×2.25mg/mL / 0.128×C(analyte)
C(analyte) = <em>3.87 mg Fe / mL</em>
As molarity is moles of solute (Fe) per liter of solution:
= <em>0.0693M Fe</em>
Answer:
2.645
Explanation:
Rate of diffusion formula:
Sqrt(mass2/mass1)
>>sqrt(14/2)
(Note:Hydrogen must exist in dwiatomic, [H2])
Reactants are the substances that undergo changes and the new substance created from it is called products.
Each shell can contain only a fixed number of electrons: The first shell can hold up to two electrons, the second shell can hold up to eight (2 + 6) electrons, the third shell can hold up to 18 (2 + 6 + 10) and so on. Some points will be nice
The contraction of the triceps muscle causes the arm to flex. The contraction of the triceps muscle causes the arm to extend. When added to the force of the biceps contracting it provides extra force to the ball.
The answer is A