At the highest point of the trajectory the vertical component will have its zero velocity, and the descent caused by the force of gravity will begin.
Since the ball is thrown with a certain speed, the vertical component reaches its highest point (upwards), until returning to the receiver who will receive the ball with the same vertical component but in the opposite direction (downwards).
Therefore the vertical component will have its highest value at launch.
Graduated cylinder is your answer
-- Gravity adds 9.8 m/s to the downward speed of any object, every second ... as long as there are no other forces messing with it.
-- In 0.6 sec, gravity added (0.6x9.8)= 5.88 m/s to the downward speed of this ball.
-- This ball didn't start from zero. You threw it down with an initial speed of 1 m/s. So after 0.6 sec, with the help of gravity, its speed is
(1) + (5.88) = 6.88 m/s .
Pick choice-C .
Notice that we don't care how high it was off the ground when you threw it, just as long as it was high enough to keep falling for 0.6 sec without hitting the ground.
False. This is because atoms can be rearranged, but they can not be destroyed or created. This explains the law of conservation of mass.