Answer:
Part a)
T = 0.52 s
Part b)

Part c)

Explanation:
As we know that the particle move from its maximum displacement to its mean position in t = 0.13 s
so total time period of the particle is given as

now we have
Part a)
T = time to complete one oscillation
so here it will move to and fro for one complete oscillation
so T = 0.52 s
Part b)
As we know that frequency and time period related to each other as



Part c)
As we know that
wavelength = 1.9 m
frequency = 1.92 Hz
so wave speed is given as



Answer:
As we keep on increasing the radius the value of the gravitation force of attraction decreases and as we decrease the radius the gravitation force increases.
Explanation:
Like the coulombs law of electrostatics, the law of gravitation also depends inversely on the square of the value of r. Therefore, as we keep on increasing the value of r the value of the gravitation force decreases and as we decrease the value of the r the value of gravitation force increases.
Gravitation Force=
Coulombs's Law= 
That is the mst best eway to find its solution.
37.4/2.2*10^3 = 0.017 gm/liter or 1.7*10^-2
so we conclude that option b is sorrect
My opinion, the answer is b
Answer:
F = 19.1 N
Explanation:
To find the force exerted by the string on the block you use the following formula:
(1)
k: spring constant = 95.5 N/m
x: displacement of the block from its equilibrium position = 0.200 m
you replace the values of k and x in the equation (1):

Hence, the force exterted on the block is 19.1 N