1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Llana [10]
3 years ago
10

A 300 mm long steel bar with a square cross section (25 mm per edge) is pulled in tension with a load of 84998 N , and experienc

es an axial elongation of 0.18 mm . Assuming that the deformation is entirely elastic, calculate the elastic modulus of this steel in GPa.Answer Format: X (no decimal places)
Engineering
2 answers:
german3 years ago
4 0

Answer:

Elastic Modulus = 227 GPa

Explanation:

Given,

Load = 84998 N

Length of bar = 300 mm = 0.3 m

Elongation = 0.18 mm = 0.00018 m

Cross sectional Area of the bar = (25mm × 25mm) = 0.025 × 0.025 = 0.000625 m²

From Hooke's law, the stress experienced by a material is proportional to the strain experienced by the same body, as long as the elastic limit isn't exceeded.

Stress ∝ strain

The coefficient of proportionality is the elastic modulus, E.

Stress = E × (Strain)

Stress = (Load)/(Cross sectional Area)

Stress = (84998 ÷ 0.000625) = 135,996,800 N/m²

Strain = (Change in length)/(Original length)

Strain = (ΔL/L) = 0.00018 ÷ 0.3 = 0.0006

E = (Stress/Strain)

E = 135,996,800 ÷ 0.0006 = 226,661,333,333.3 Pa = (2.267 × 10¹¹) Pa

1 GPa = 10⁹ Pa

(2.267 × 10¹¹) = 2.267 × 10² × 10⁹ = 226.7 GPa = 227 GPa to the nearest GPa. (No decimal place)

Hope this Helps!!!

Paraphin [41]3 years ago
4 0

Answer:

227 Gpa

Explanation:

∆L = PL/AE

E = PL/A∆L

E is Elastic Modulus

L is length

A is Area

L = 300 mm = 300* 10^-3

A = (25 * 10 ^-3)^2

P = 84998N

∆L = 0.18mm = 0.18*10^-3

E = 84998*300*10^-3/((25*10^-3)^2*0.18*10^-3

E = 226661333333.3Pa

= 226.7 * 10^9Pa

10^9Pa = 1 GPA

E = 226.7 Gpa

E = 227 no decimal

You might be interested in
When we utilize a visualization on paper/screen, that visualization is limited to exploring: Group of answer choices Relationshi
Mila [183]

Answer:

As many variables as we can coherently communicate in 2 dimensions

Explanation:

Visualization is a descriptive analytical technique that enables people to see trends and dependencies of data with the aid of graphical information tools. Some of the examples of visualization techniques are pie charts, graphs, bar charts, maps, scatter plots, correlation matrices etc.

When we utilize a visualization on paper/screen, that visualization is limited to exploring as many variables as we can coherently communicate in 2-dimensions (2D).

6 0
3 years ago
A circular section of material is tested. The original specimen is 200 mm long and has a diameter of 13 mm. When loaded to its p
n200080 [17]

Answer:

modulus of elasticity = 100.45 Gpa,

proportional limit = 150.68 N/mm^2.

Explanation:

We are given the following parameters or data in the question as;

=> "The original specimen = 200 mm long and has a diameter of 13 mm."

=> "When loaded to its proportional limit, the specimen elongates by 0.3 mm."

=> " The total axial load is 20 kN"

Step one: Calculate the area

Area = π/ 4 × c^2.

Area = π/ 4 × 13^2 = 132.73 mm^2.

Step two: determine the stress induced.

stress induced = load/ area= 20 × 1000/132.73 = 150.68 N/mm^2.

Step three: determine the strain rate:

The strain rate = change in length/original length = 0.3/ 200 = 0.0015.

Step four: determine the modulus of elasticity.

modulus of elasticity = stress/strain = 150.68/0.0015 = 100453.33 N/mm^2 = 100.45 Gpa.

Step five: determine the proportional limit.

proportional limit = 20 × 1000/132.73 = 150.68 N/mm^2.

7 0
3 years ago
Read 2 more answers
On diesel engines, data from ________ sensors are commonly used to adjust exhaust gas recirculation (EGR) rates.
e-lub [12.9K]

Answer:

Air mass sensors is the right answer i think

Explanation:

3 0
2 years ago
Your local hospital is considering the following solution options to address the issues of congestion and equipment failures at
kiruha [24]
Jsjhjrhwjdbwjwjrueiworuuwud
4 0
2 years ago
If you get a flat in the front of your car, your car will:
juin [17]

Answer:

stop and might even crash

Explanation:

6 0
3 years ago
Other questions:
  • Why should engineers avoid obvious patterns?
    13·2 answers
  • 4.
    6·2 answers
  • Mike is involved in developing the model building codes that various states and local authorities in the United States adopt. He
    6·1 answer
  • What do you think are the advantages and disadvantages of isothermal constant volume high extension cycle? And how efficient do
    13·1 answer
  • Plot the absorbance, A, versus the FeSCN2 concentration of the standard solutions (the values from your Pre-lab assignment). Fro
    7·1 answer
  • You start your car and begin to pull out of a parking space. After leaving the space, You notice that the brake light on your in
    12·1 answer
  • A type 3 wind turbine has rated wind speed of 13 m/s. Coefficient of performance of this turbine is 0.3. Calculate the rated pow
    12·1 answer
  • An organization is struggling to differentiate threats from normal traffic and access to systems. A security engineer has been a
    12·1 answer
  • 1. Which of the following is the ideal way to apply pressure onto pedals?
    14·2 answers
  • Pipelines are a useful means of transporting oil because they: Multiple select question. are fast never fail to deliver are chea
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!