La medida aproximada del lado faltante según el teorema de desigualdad de triángulos es:
- más de 12 cm y menos de 48 cm
De acuerdo con el teorema de la desigualdad del triángulo que establece que;
La suma de la longitud de 2 lados cualesquiera de un triángulo debe ser mayor que el tercer lado.
Dado que :
a = 30 cm; b = 18 cm; c =?
Basado en el teorema de la desigualdad del triángulo;
- c debe ser <(a + b)
- c <(30 + 18); c <48 cm
- También c> (a - b)
- c> (30 - 18); c> 12 cm
Por lo tanto, el lado faltante debe ser menor que 48 y mayor que 12.
Más información: brainly.com/question/18345497?referrer=searchResults
Answer:
Step-by-step explanation:
It might be the length of one of the sides of a polygon (a figure with straight sides) or the radius of a circle. ... You can find the perimeter of a regular octagon (8-sided figure with equal sides) by multiplying the length of one of the sides by 8. The area of a figure is the measure of how large its surface is. I think btw if its wrong sorry :)
Answer:
56.842 km/hr
0.947 km / min
15.789 m/s
Step-by-step explanation:
speed = distance / time
let's assume your teacher wants it in km/ hr
28.5 minutes = ? hours
60 minutes = 1 hour
we can multiply both sides of 60 minutes = 1 hour by 28.5/60 to get 28.5 minutes = 28.5/60 hours
distance = 27 km
27 km / (28.5/60) hours = 56.842 km/hr
in km / minute
27 km / 28.5 minutes = 0.947 km / min
in meters/second:
1 minute = 60 seconds
28.5 minutes = ? seconds
we can multiply both sides of the first equation by 28.5 to get
28.5 minutes = 1710 seconds
27 km = ? meters
1 km = 1000 meters
we can multiply both sides of the second equation by 27 to get
27km = 27000 meters
27000 meters / 1710 seconds = 15.789 m/s
Guevedvdidhdvdrvrjrbrirvrirvrutvbtirvtirirrorbr
Answer:

Step-by-step explanation:
We want to find an equation of a line that's perpendicular to x=1 that also passes through the point (8,-9).
Note that x=1 is a <em>vertical line </em>since x is 1 no matter what y is.
This means that if our new line is perpendicular to the old, then it must be a <em>horizontal line</em>.
So, since we have a horizontal line, then our equation must be our y-value of our point.
Our y-coordinate of our point (8,-9) is -9.
Therefore, our equation is:

And this is in standard form.
And we're done!