Answer:
See explanation
Explanation:
Potassium is a metal. Remember that metals are electropositive in nature. This implies that they give out electrons when they undergo ionic bonding with nonmetals.
Chlorine is a nonmetal. So the bond between chlorine and potassium is ionic. Potassium gives out one electron to chlorine and the both ions now attain a stable octet.
The electronic configuration of potassium is [Ar]4s1. After giving out an electron to chlorine in an ionic bond, its electronic configuration is now [Ar].
Answer:
In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as
c=4.18Jg∘C
Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.
Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of 1 g of that substance by 1∘C.
In water's case, you need to provide 4.18 J of heat per gram of water to increase its temperature by 1∘C.
What if you wanted to increase the temperature of 1 g of water by 2∘C ?
This will account for increasing the temperature of the first gram of the sample by n∘C, of the the second gramby n∘C, of the third gram by n∘C, and so on until you reach m grams of water.
And there you have it. The equation that describes all this will thus be
q=m⋅c⋅ΔT , where
q - heat absorbed
m - the mass of the sample
c - the specific heat of the substance
ΔT - the change in temperature, defined as final temperature minus initial temperature
In your case, you will have
q=100.0g⋅4.18Jg∘C⋅(50.0−25.0)∘C
q=10,450 J
Answer:
if you want to have answers, don't take it wrong ...but put more details !
Explanation:
I think it would the hydrosphere