Data:
m (<span>Sample Mass) = ?
n (</span><span>Number of moles) = 0.714 mol
MM (Molar Mass) of </span>Mercury (I) Chloride (

)
Hg = 2*200.59 = 401.18 amu
Cl = 2*35.453 = 70.906 amu
----------------------------------------
Molar Mass

= 401.18 + 70.906 = 472.086 ≈ 472.09<span> amu or 472.09 g/mol
</span>
Formula:

Solving:



Answer:
By approximation would be letter
D) <span>
337.2 g</span>
Answer : The mass of solute in solution is
.
Solution : Given,
Molarity = 0.730 M
Volume of solution = 1.421 L
Molar mass of sodium carbonate = 105.98 g/mole
Formula used for Molarity :

where,
w = mass of solute
M = Molar mass of solute
V = volume of solution in liter
Sodium carbonate is solute and water is solvent.
Now put the given values in above formula, we get the mass of solute in solution.

By rearranging the terms, we get

Therefore, the mass of solute in solution is
.
Answer:
1.45 x 10²³ particles
Explanation:
Given parameters:
Number of moles of carbon = 0.24moles
Unknown:
Number of particles = ?
Solution:
A mole of a substance contains the Avogadro's number of particles.
The Avogadro's number of particles is 6.02 x 10²³
So;
0.24 moles of carbon will contain 0.24 x 6.02 x 10²³ = 1.45 x 10²³ particles