Answer:
5.158 × 10²³ atoms K
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
33.49 g K
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of K - 39.10 g/mol
<u>Step 3: Convert</u>
<u />
= 5.15797 × 10²³ atoms K
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig figs and round.</em>
5.15797 × 10²³ atoms K ≈ 5.158 × 10²³ atoms K
I think it is C, because a covalent bond is a distribution of 2 atoms to 1 electron, meaning they are sharing and not exchanging, and the electronegravity would be above 1.7
To solve such this we must know the concept of chemical reaction and dehydration reaction. Therefore, dehydration means to remove water from a compound.
<h3>
What is chemical reaction? </h3>
Chemical reaction is a process in which two or more than two molecules collide in right orientation and energy to form a new chemical compound. The mass of the overall reaction should be conserved. There are so many types of chemical reaction reaction like combination reaction, double displacement reaction.
Dehydration is a chemical process in which removal of water molecules from a compound take place using suitable reagent. The best reagent for dehydration can be any reagent that is water loving.
Therefore, dehydration means to remove water.
Learn more about the chemical reactions, here:
brainly.com/question/3461108
#SPJ1
Pushing down a piston in an airtight cylinder would tend to increase the pressure in the system since the particle collision and collisions with the walls are now more frequent. Also, pushing further, the gas would undergo a phase change from gas to a liquid.