Electrophiles are reagents attracted to electrons.
Electrophiles tend to be electron-deficient and carry partial positive charges. They are attracted to species with lone pairs of electrons. For example, protons
have no electrons and tend to share ones with other species, hence behaving as electrophiles in aqueous reactions. In the reaction between
and ammonia
, protons would be attracted to lone electron pairs on nitrogen atoms in ammonia molecules, which carry partial positive charges.
The Lewis Acid-base theory define Acids as species that accept electron pairs in a particular acid-base reaction. Electrophiles, by definition, tend to accept electrons. Lewis acids thus behaves as electrophiles in acid-base reactions. In the previous example,
demonstrates acidic behavior and can be inferred as an electrophile.
At the point when a response achieves a condition of concoction balance under a specific arrangement of conditions, no further changes in the groupings of reactants and items happen. On the off chance that a change is made in the conditions under which the framework is at harmony, substance change will happen so as to build up another balance. The components that can impact harmony are an adjustment in focus, change in weight (or volume), and change in temperature.
Answer:
- <u><em>Ratio of the mass carbon that combines with 1.00 g of oxygen in compound 2 to the mass of carbon that combines with 1.00 g of oxygen in compound 1 = 2</em></u>
Explanation:
First, detemine the mass of oxygen in the two samples by difference:
- mass of oxygen = mass of sample - mass of carbon
Item Compound 1 Compound 2
Sample 80.0 g 80.0 g
Carbon 21.8 g 34.3 g
Oxygen: 80.0 g - 21.8g = 58.2 g 80.0 g - 34.3 g = 45.7 g
Second, determine the ratios of the masses of carbon that combine with 1.00 g of oxygen:
- For each sample, divide the mass of carbon by the mass of oxygen determined above:
Sample Mass of carbon that combines with 1.00 g of oxygen
Compound 1 21.8 g / 58.2 g = 0.375
Compound 2 34.3 g / 45.7 g = 0.751
Third, determine the ratio of the masses of carbon between the two compounds.
- Divide the greater number by the smaller number:
- Ratio = 0.751 / 0.375 = 2.00 which in whole numbers is 2