<span>John Dalton introduced a theory proposing that elements vary because of the mass of their atoms.
He said in his theory that all matter is made up of indivisible blocks called atoms. He also stipulated in his theory that elements are identical thus, have different sizes and masses.
Dalton's theory was different from Niels Bohr who proposed a new atomic model which was also commonly known as the modern atomic theory. Bohr's theory says that atoms are arranged in circular orbits around the nucleus. He patterned his model as the solar system.
</span>
I believe c is the right answer.
The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Electron - negligible mass, negative charge, orbits the nucleus
Proton - 1 AMU, positive charge, in the nucleus
Neutron, 1 AMU, no charge, in the nucleus
Answer:
electrophile(H⁺) is needed to react with alkene in the first step and nucleophile (OH⁻) is not available in the first step
Explanation: