Answer:
the temperature of the star
Explanation:
The color of stars usually indicates the temperature of the star.
A star that is relatively cold usually shows a typical red color.
The hottest stars have a blue color.
- These star colors have been used by astronomers to determine their temperature.
- A broad spectrum between blue, the hottest color, and red the coldest is used.
- Class O stars are usually the blue colored ones
- Class M is the coldest with red color
Answer: The balanced equation for the given reaction is
.
Explanation:
A chemical equation which contains same number of atoms on both reactant and product side.
For example, 
Here, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
To balance this equation, multiply
by 2 on reactant side and multiply
by 2. Hence, the equation will be re-written as follows.

Here, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
Now, there are same number of atoms on both reactant and product side. So, this equation is balanced.
Thus, we can conclude that the balanced equation for the given reaction is
.
The correct description for an atom of helium would be option C. An atom of helium has its valence electrons in its first energy level, it wouldn't and can't satisfy the Octet rule as it only has 2 electrons, but with 2, it has a full shell, as the first energy level can hold only 2 electrons.
Answer:
The options <u>(A) -</u>The rate law for a given reaction can be determined from a knowledge of the rate-determining step in that reaction's mechanism. and <u>(C) </u>-The rate laws of bimolecular elementary reactions are second order overall ,<u>is true.</u>
Explanation:
(A) -The rate law can only be calculated from the reaction's slowest or rate-determining phase, according to the first sentence.
(B) -The second statement is not entirely right, since we cannot evaluate an accurate rate law by simply looking at the net equation. It must be decided by experimentation.
(C) -Since there are two reactants, the third statement is correct: most bimolecular reactions are second order overall.
(D)-The fourth argument is incorrect. We must track the rates of and elementary phase that is following the reaction in order to determine the rate.
<u>Therefore , the first and third statement is true.</u>