The answer to this would be false.
Answer:
option A = S(s) + O₂(g) → SO₂ (s)
Explanation:
Chemical equation:
S(s) + O₂(g) → SO₂ (s)
when sulfur burned in the presence of oxygen it produce sulfur dioxide. The sulfur dioxide can further react with oxygen to produce sulfur trioxide and then react with water to form sulfuric acid.
Uses of sulfur dioxde:
It is used as a solvent and reagent in laboratory.
Sulfur dioxide is used to produce sulfuric acid.
It is used as a disinfectant
It is also used as a reducing agent.
It is used to preserve the dry food.
The volume occupied by the gas in the container is 1 m³
Boyles law applies
P₁ V₁ = P₂ V₂
Where P₁ = 200kpa
P₂ = 300kpa
if its initial volume is 1.5
then,
P₁ V₁ = P₂ V₂
200 × 1.5 = 300 × V₂
V₂ = 200 × 1.5 / 300
= 1 m³
Hence the volume occupied by the gas container is 1 m³
Learn more about the Boyles law on
brainly.com/question/13759555
#SPJ4
Explanation:
Molar mass
The mass present in one mole of a specific species .
The molar mass of a compound , can easily be calculated as the sum of the all the individual atom multiplied by the number of total atoms .
(a) S₈
Molar mass of of the atoms are -
sulfur, S = 32 g/mol.
Molar mass of S₈ = 8 * 32 g/mol. = 256 g/mol.
(b) C₂H₁₂
Molar mass of of the atoms are -
Hydrogen , H = 1 g/mol
Carbon , C = 12 g/mol
Molar mass of C₂H₁₂ = ( 2 * 12 ) + (12 * 1 ) = 36 g /mol
(c) Sc₂(SO₄)₃
Molar mass of of the atoms are -
sulfur, S = 32 g/mol.
oxygen , O = 16 g/mol.
scandium , Sc = 45 g/mol.
Molar mass of Sc₂(SO₄)₃ = (2 * 45 ) + ( 3 *32 ) + ( 12 * 16 ) = 378 g /mol
(d) CH₃COCH₃ (acetone)
Molar mass of of the atoms are -
Carbon , C = 12 g/mol
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molar mass of CH₃COCH₃ (acetone) = (3 * 12 ) + ( 1 * 16 ) + ( 6 * 1 ) = 58g/mol
(e) C₆H₁₂O₆ (glucose)
Molar mass of of the atoms are -
Carbon , C = 12 g/mol
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molar mass of C₆H₁₂O₆ (glucose) = ( 6 * 12 ) + ( 12 * 1 ) + ( 6 * 16 ) = 108g/mol.
Answer:
See explanation
Explanation:
Chlorine is a member of the halogen family known as a toxic yellowish green gas. Inhalation of chlorine for a prolonged period of time leads to pulmonary edema. If a person comes in contact with compressed liquid chlorine the person may experience frostbite of the skin and eyes.
However chlorine is very useful in water disinfection and is preferred in water treatment because it provides residual disinfection of the treated water.
Chlorine gas may be dissolved in NaOH to form oxochlorate I which is used as a bleach in cleaning.