Answer:
True
Explanation:
Stars are bright and enormous astronomical bodies that are located at a large distance from the earth. They are made up of the lightest gaseous elements namely hydrogen and helium. These hydrogen atoms undergo the reaction of nuclear fusion, which fuels the energy of the star and allows the star to shine, releasing a large amount of energy. They are located about trillions of miles away from the location of the earth, due to which they appear smaller in size.
Thus, the above-given statement is True.
Answer:
The correct answer is CaO > LiBr > KI.
Explanation:
Lattice energy is directly proportional to the charge and is inversely proportional to the size. The compound LiBr comprises Li+ and Br- ions, KI comprises K+ and I- ions, and CaO comprise Ca²⁺ and O²⁻ ions.
With the increase in the charge, there will be an increase in lattice energy. In the given case, the lattice energy of CaO will be the highest due to the presence of +2 and -2 ions. K⁺ ions are larger than Li⁺ ion, and I⁻ ions are larger than Br⁻ ion.
The distance between Li⁺ and Br⁻ ions in LiBr is less in comparison to the distance between K⁺ and I⁻ ions in KI. As a consequence, the lattice energy of LiBr is greater than KI. Therefore, CaO exhibits the largest lattice energy, while KI the smallest.
Answer:
a) FePO4(s)⇄Fe^3+(aq) + PO4^3-(aq)
b) ZnCO3(s)⇄Zn^2+(aq) + CO3^2-(aq)
c) NH4Cl(s)⇄ NH4^+(aq) + Cl^-(aq)
Explanation:
An ionic solid simply means a solid substance that is held together by ionic bonds. When an ionic substance is added to water, the ions interact with the dipoles in water and is pulled apart to form the constituent cation and anion present in the ionic solid. This is the process that we have referred to as dissolution.
The Ksp of an ionic solid is obtained from the chemical equation that shows the dissolution of an ionic solid in water. The Ksp is actually an equilibrium constant that shows the extent of dissolution of an ionic solid in water.
a) FePO4(s)⇄Fe^3+(aq) + PO4^3-(aq)
b) ZnCO3(s)⇄Zn^2+(aq) + CO3^2-(aq)
c) NH4Cl(s)⇄ NH4^+(aq) + Cl^-(aq)