1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina18 [472]
3 years ago
7

Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one another, t

he first having a mass of 135,000kg and a velocity of 0.305m/s, and the second having a mass of 100,000kg and a velocity of −0.210m/s. (The minus indicates direction of motion.) What is their final velocity?
Physics
2 answers:
wolverine [178]3 years ago
8 0

Answer:

final velocity =  0.08585m/s

Explanation:

We are taking train cars as our system. In this system no external force is acting. So we can apply the law of conservation of linear momentum.

The law of conservation of linear momentum states that the total linear momentum of a system remains constant if there is no external force acting on the system. That is total linear momentum before = total linear momentum after

total linear momentum before = linear momentum of first train car + linear momentum of second train car

We know that linear momentum = mv

where,

m = mass

v = velocity

thus,

total linear momentum before = m₁v₁ + m₂v₂

m₁ = mass of first train car = 135,000kg

v₁ = velocity of first train car = 0.305m/s

m₂ = mass of first second car =  100,000kg

v₂ = velocity of second train car =  −0.210m/s

Note: Momentum is a vector. So while adding momentum we should take account of its direction too. Here since second train car is moving in a direction opposite to that of the first one, we have taken its velocity as negative.

total linear momentum before = m₁v₁ + m₂v₂

                                                  = 135,000x0.305 + 100,000x(−0.210)

                                                  = 135,000x0.305 - 100,000x0.210

                                                  = 20,175 kgm/s

Now we have to find total linear momentum after bumping. After the bumping both the train cars will be moving together with a common velocity(say v).

Therefore, total linear momentum after = mv

m = m₁ + m₂ = 135,000 + 100,000 = 235,000

total linear momentum before = total linear momentum after

235,000v = 20,175

v =  \frac{20,175}{235,000}

  = 0.08585m/s

Lynna [10]3 years ago
7 0

Answer:

0.0859 m/s

Explanation:

mass of first train, m1 = 135000 kg

mass of second train, m2 = 100000 kg

initial velocity of first train, u1 = 0.305 m/s

initial velocity of second train, u2 = - 0.210 m/s

Let the final velocity after coupling is v.

Use the conservation of momentum

m1 x u1 + m2 x u2 = (m1 + m2) x v

135000 x 0.305 - 100000 x 0.210 = (135000 + 100000) x v

41175 - 21000 = 235000 v

v = 0.0859 m/s

Thus, the velocity after coupling is 0.0859 m/s.

You might be interested in
After the driver first notices the obstacle, the car moves uniformly for a time interval t1−t0=t before the brakes are applied.
loris [4]

Answer:

V(t1-t0)

Explanation:

Moving 'uniformly' means constant velocity (speed). the formula for constant speed motion is V = \frac{distance}{time} =( change in position/ change in time)

where,

                  V is speed

given in the statement :

change in time = t =  t1-t0

let the constant speed be ' V '

disance = X = X1-X0

applying the above mentioned formula: V = \frac{X}{t}

V = X/t

X = Vt

the distance X1-X0 = Vt =V(t1-t0)

3 0
4 years ago
A ride-sharing car moving along a straight section of road starts from rest, accelerating at 2.00 m/s2 until it reaches a speed
fgiga [73]

Answer:

Explanation:

Time taken to accelerate to 28 m /s

= 28 / 2 = 14 s

a ) Total length of time in motion

= 14 + 41 + 5

= 60 s .

b )

Distance covered while accelerating

s = ut + 1/2 at²

= 0 + .5 x 2 x 14²

= 196 m .

Distance covered while moving in uniform motion

= 28 x 41

= 1148 m

distance covered while decelerating

v = u - at

0 = 28 - a x 5

a = 5.6 m / s²

v² = u² - 2 a s

0 = 28² - 2 x 5.6 x s

s = 28² / 2 x 5.6

= 70 m .

Total distance covered

= 196 + 1148 + 70

= 1414 m

total time taken = 60 s

average velocity

= 1414 / 60

= 23.56 m /s .

8 0
3 years ago
The largest graduated cylinder in my lab holds 2 L and has an inner diamter (the part that holds the water) of 8 cm. When it is
mestny [16]

Answer:

<em>3924 Pa</em>

<em></em>

Explanation:

Volume of cylinder = 2 L = 0.002 m^3  (1000 L = 1 m^3)

diameter of the inner cylinder = 8 cm = 0.08 m  (100 cm = 1 m)

radius of the inner cylinder = diameter/2 = 0.08/2 = 0.04 m

area of the inner cylinder = \pi r^{2}

where \pi = 3.142,

and r = radius = 0.04 m

area of inner cylinder = 3.142 x 0.04^{2} = 0.005 m^2

<em>height h of the water in this cylinder = volume/area</em>

h = 0.002/0.005 = 0.4 m

<em>pressure at the bottom of the cylinder due to the height of water = pgh</em>

where

p = density of water = 1000 kg/m^3

g = acceleration due to gravity = 9.81 m/s^2

h = height of water within this cylinder = 0.4 m

pressure = 1000 x 9.81 x 0.4 = <em>3924 Pa</em>

3 0
3 years ago
What happens to the electric potential energy of a negatively charged ion as it moves through the water from the negative probe
Nataly [62]

Answer:

Decreases.

Explanation:

Electric potential energy is the potential energy which is associated with the configuration of points charge in a system and it is the result of conservative coulomb force.

When the negatively charge ion is at the position of the negative probe than its potential energy is positive when it is move towards the positive probe it's potential energy becomes negative due to the negative ion.

Therefore, potential energy is decreases when negative charge ion moves through the water from negative probe to positive probe.

5 0
4 years ago
Hello, why do all electromagnetic waves travel at the same speed in vacuum?
Viktor [21]

Answer:

due to the magnetic field

Explanation:

magnetic field is the same in the vacuum

6 0
3 years ago
Other questions:
  • Can magnets move other objects from a distance​
    7·1 answer
  • Homer agin leads the varsity team in home runs. In a recent game, homer hit a 96 mi/hr sinking curve ball head on, sending it of
    7·2 answers
  • A substance with a pH of 9 has
    14·1 answer
  • At any given time in space, how much of<br> the moon is lit by the sun?<br> PLEASE ANSWER QUICKLY!!!
    12·1 answer
  • A ball is thrown directly upwards. Is there a point of trajectory where the ball has zero acceleration
    6·1 answer
  • What type of energy depends upon an object mass and the object speed?
    8·1 answer
  • Heat transfer in liquids or gases that happens due to currents of hot and cold is called
    11·2 answers
  • Brainliest answer! You and a friend are at a park and want to swing on the swings. Describe when you would have the greatest pot
    10·2 answers
  • This table shows statistics about the US population in 2010. Which demographic trend does this table best support? People are ma
    7·2 answers
  • The voltage between two parallel plates separated by a distance of 3. 0 cm is 120 v. The electric field between the plates is?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!