The molecule with same molecular formula but different arrangement of atoms is said to be an isomer.
When 2,2-dimethylbutane reacts with chlorine in the presence of light gives three isomers that is
(3-chloro-2,2-dimethylbutane),
(1-chloro-2,2-dimethylbutane) and
(1-chloro-3,3-dimethylbutane).
In above case, the molecular formula of all isomers are same i.e.
but chlorine is arranged in different positions of carbon. Thus, results isomers.
The reaction is shown in the image.
Answer:
52.45g
Explanation:
The computation of the mass of pure acetic acid in 125mL of this solution is shown below:
The percentage of mass would be equivalent to the g of solute in each 100g of water
As we know that
density = mass ÷ volume
So,
Volume = mass ÷ density
V = 100g / 1.049 (g / ml)
V = 95.328 mL
Now In every 95,328 ml of C_2H_4O_2 there are 40g of C_2H_4O_2
i.e.
each 125ml of C_2H_4O_2 there are 52.45g
SO,
x = 40g. 125ml ÷ 95.328
x = 52.45g
220 grams of sugar would be in 2 liters of orange juice
Compounds are classified according to the elements that make them up. For example, oxides contain one or more oxygen atoms, hydrides contain one or more hydrogen atoms.
compounds form different types of bonds too. a metal and nonmetal element will create an ionic bond, two nonmetal elements create covalent bonds
Given:
P = 123 kPa
V = 10.0 L
n = 0.500 moles
T = ?
Assume that the gas ideally, thus, we can use the ideal gas equation:
PV = nRT
where R = 0.0821 L atm/mol K
123 kPa * 1 atm/101.325 kPa * 10.0 L = 0.500 moles * 0.0821 Latm/molK * T
solve for T
T = 295.72 K<span />