True
The rate at which work is done is referred to as power. A task done quite quickly is described as having a relatively large power. The same task that is done more slowly is described as being of less power. Both tasks require he same amount of work but they have a different power.
Gravitational potential energy can be calculated using the formula:

Where:
PEgrav = Gravitational potential energy
m= mass
g = acceleration due to gravity
h = height
On Earth acceleration due to gravity is a constant 9.8 but since the scenario is on Mars, the pull of gravity is different. In this case, it is 3.7, so we will use that for g.
So put in what you know and solve for what you don't know.
m = 10kg
g = 3.7m/s^2
h = 1m
So we put that in and solve it.


Incomplete question.The complete one is here
A runner taking part in the 200m dash must run around the end of a track that has a circular arc with a radius curvature of 30m. The runner starts the race at a constant speed. If she completes the 200m dash in 23s and runs at constant speed throughout the race, what is her centripetal acceleration as she runs the curved portion of the track?
Answer:

Explanation:
Given data

Required
Centripetal acceleration
Solution
According to the motions equation the velocity given by:

The centripetal acceleration is given by:

It's attached by earths gravity that keeps it the same force to stay anchored
I'm gonna take a long shot here and say C. This is just based on common sense, sense electromagnets happen when electricity goes around a copper coil, as far as I know.<span />