A person is submerged of about 97.9%.
The average density of the human body is given as 979 kg/ m³.
<h3>Define Law of floatation.</h3>
Law of floatation can be defined as the volume of the liquid displaced when a body floats on the liquid surface is equal to the body submerged in the water.
As body has the stable equilibrium state, the buoyancy of the fluid will be equal to the weight.
Weight of the body floating = Weight of the body immersed in fluid
Law of floatation = Density of the floating object / density of fluid
As fluid is the freshwater here, the density of fluid will be 1000 kg/ m³.
= (979 kg/ m³) / ( 1000 kg/ m³)
= 97.9 %
A person is submerged when floating gently in fresh water about 97.9%.
Learn more about law of floatation,
brainly.com/question/17032479
#SPJ4
Answer:
Part a)
Velocity = 6.9 m/s
Part b)
Position = (3.6 m, 5.175 m)
Explanation:
Initial position of the particle is ORIGIN
also it initial speed is along +X direction given as

now the acceleration is given as

when particle reaches to its maximum x coordinate then its velocity in x direction will become zero
so we will have



Part a)
the velocity of the particle at this moment in Y direction is given as



Part b)
X coordinate of the particle at this time



Y coordinate of the particle at this time



so position is given as (3.6 m, 5.175 m)
Answer:
use symbollab it will help u
Explanation:
Answer: Surface water is replaced by the <u>water</u> cycle.
Explanation: The water cycle is a cycle that describes the movement of water.