Answer: find the answer in the explanation
Explanation:
The capillarity of water molecules is different from the mercury molecules.
What is capillarity ?
This is the tendency of a liquid substance to rise in a capillary tube.
Molecules water rises up in a harrow tubes because of the force of adhesion between the water molecules and the tube molecules is greater than the force of cohesion between the water molecules. This helps water to wet the tube and rise. While mercury which is also a liquid falls in a narrow tubes to level below the outside surface because the force of cohesion between the mercury molecules is greater than the force of adhesion between the mercury molecules and the tube molecules. Mercury does not wet.
Answer:
the formula is efficiency = output / input × 100%
Answer:
Solid-state
Explanation:
A solid-state device can be defined as a crystalline material that is typically made up of semiconductor and as such controls the number and rate of flow of charged carriers such as holes or electrons.
Some examples of a solid-state device are light emitting diodes (LED), integrated circuit (IC), Transistors, liquid crystal display (LCD) etc.
A solid-state device such as a transistor, refers to a semiconductor component that is used to control the flow of voltage or current and as a gate (switch) for electronic signals. Thus, a transistor allows for the amplification, control and generation of electronic signals in a circuit.
Hence, solid-state devices need constant power to operate. The timing functions are initiated by the presence or absence of a separate "trigger" signal.
Basically, these solid-state devices use the optical and electrical properties of semiconductor components such as transistors, triacs, thyristors, diodes to perform its input-output switching and isolation functions.
The reason why there is no energy shortage nor will there ever be is because energy is being preserved and conserved and only changes form. It never gets lost or increased.
Hello! The nontoxic, nonflammable chemicals containing atoms of carbon, chlorine, and fluorine that have created a hole in the ozone layer are the Chlorofluorocarbons (CFCs)
These are compounds developed and improved by Thomas Midgley in the late 1920s. They were used as refrigerants and aerosol propellants.
These compounds created a hole in the ozone layer by the following reactions:
CCl₃F → CCl₂F· + Cl· (In the presence of light. Radical Reaction)
Cl· + O₃ → ClO + O₂
ClO + O₃ → Cl· + O₂
The last 2 reactions can repeat in a radical mechanism and explain why these compounds are so harmful to the ozone layer.