idksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu j
8. In soft magnetic materials such as iron, what happens when an external magnetic field is removed?
a. The domain alignment persists.
b. The orientation of domains fluctuates.
c. The material becomes a hard magnetic material.
d. The orientation of domains changes, and the material returns to an unmagnetized state.
9. According to Lenz’s law, if the applied magnetic field changes,
a. the induced field attempts to keep the total field strength constant.
b. the induced field attempts to increase the total field strength.
c. the induced field attempts to decrease the total field strength.
d. the induced field attempts to oscillate about an equilibrium value.
10. The direction of the force on a current-carrying wire in an external magnetic field is
a. perpendicular to the current only.
b. perpendicular to the magnetic field only.
c. perpendicular to the current and to the magnetic field.
d. parallel to the current and to the magnetic field
Neutron stars are formed when a massive star runs out of gas and collapses.
Well, almost any website can be, but if you are meaning for money, then google. if you are meaning reliable, then look for something with .org, its history and stuff
Answer:
570 N
Explanation:
Draw a free body diagram on the rider. There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.
The rider is moving at constant speed, so acceleration is 0.
Sum of the forces in the x direction:
∑F = ma
F cos 30° - T cos 15° = 0
F = T cos 15° / cos 30°
Sum of the forces in the y direction:
∑F = ma
F sin 30° - W - T sin 15° = 0
W = F sin 30° - T sin 15°
Substituting:
W = (T cos 15° / cos 30°) sin 30° - T sin 15°
W = T cos 15° tan 30° - T sin 15°
W = T (cos 15° tan 30° - sin 15°)
Given T = 1900 N:
W = 1900 (cos 15° tan 30° - sin 15°)
W = 570 N
The rider weighs 570 N (which is about the same as 130 lb).