Answer:
1.07 g Ba
Explanation:
Hello there!
In this case, according to the definition of the Avogadro's number and the molar mass, it is possible to say that 6.022x10^{23} atoms of barium equal one mole, and at the same time, 1 mole equals 137.327 grams of this element; thus, it is possible to say that 6.022x10^{23} atoms of barium have a mass of 137.327 grams; therefore, it i possible for us to calculate the required mass in grams as shown below:

Best regards!
[Ar] 4s²
Let me know if you want a step by step!
Hope that helps
Answer:
=154.8 J
Explanation:
The rise in temperature is contributed by the change in temperature.
Change in enthalpy = MC∅, where M is the mass of the substance, C is the specific heat capacity and ∅ is the change in temperature.
Change in temperature = 100.0°C-20.0°C=80°C
ΔH=MC∅
The specific heat capacity of gold= 0.129 J/g°C
ΔH= 15.0g×0.129J/g°C×80°C
=154.8 J
Answer:
To gain stability
Explanation:
If the outermost shell is not completely filled with electrons, the element has one of the three options: gaining electrons, losing electrons or sharing electrons. By gaining or losing electrons, ionic compounds are produced. Sharing of electrons results in the formation of covalent compounds.