For each half reaction:
>Balance all except O and H
>Balance O using H2O
>balance H using H+
>balance charge using e-
Then multiply the half reactions to balance the e-
Add them back together
If a force always acts perpendicular to an object's direction of motion, that force cannot change the object's kinetic energy. It is a true statement .
Kinetic energy is the energy that an object possesses due to its motion. It is basically the energy of mass in motion. Kinetic energy can never be negative and it is a scalar quantity i.e. it provides only the magnitude and not the direction.
According to law of conservation of mechanical energy change in potential energy is equal and opposite to the change in the kinetic energy.
According to the principle of conservation of mechanical energy, The total mechanical energy of a system is conserved i.e., the energy can neither be created nor be destroyed; it can only be internally converted from one form to another if the forces doing work on the system are conservative in nature.
since, potential energy is stored in the form of work done
Work done = Fs cos (theta)
If force always acts perpendicular to an object's direction of motion
theta = 90 °
cos (90 ) = 0
Work done = 0
since , there is no work done , hence kinetic energy will not change
To learn more about kinetic energy here
brainly.com/question/12669551
#SPJ4
Answer:
the eagle flew 1,025 km
Explanation:
since the eagle flew for 3 hours at 115 km/h it flew a total of 345 km during that time. During the 5 hours at 136 km/h the eagle flew a total of 680 km.
<span>(a) -9.97 m/s
(b) x = 2.83
This is a simple problem in integral calculus. You've been given part of the 2nd derivative (acceleration), but not quite. You've been given the force instead. So let's setup a function for acceleration.
f''(x) = -8x N / 3.1 kg= -8x kg*m/s^2 / 3.1 kg = -2.580645161x m/s^2
So the acceleration of the body is now expressed as
f''(x) = -2.580645161x m/s^2
Let's calculate the anti-derivative from that.
f''(x) = -2.580645161x m/s^2
f'(x) = -1.290322581x^2 + C m/s
Now let's use the known velocity value at x = 2.0 to calculate C
f'(x) = -1.290322581x^2 + C
1
1 = -1.290322581*2^2 + C
11 = -1.290322581*4 + C
11 = -5.161290323 + C
16.161290323 = C
So the velocity function is
f'(x) = -1.290322581x^2 + 16.161290323
(a) The velocity at x = 4.5
f'(x) = -1.290322581x^2 + 16.161290323
f'(4.5) = -1.290322581*4.5^2 + 16.161290323
f'(4.5) = -1.290322581*20.25 + 16.161290323
f'(4.5) = -26.12903227 + 16.161290323
f'(4.5) = -9.967741942
So the velocity is -9.97 m/s
(b) we want a velocity of 5.8 m/s
5.8 = -1.290322581x^2 + 16.161290323
0 = -1.290322581x^2 + 10.36129032
1.290322581x^2 = 10.36129032
x^2 = 8.029999998
x = 2.833725463</span>
The amplitude of the electromagnetic waves coming from
a light bulb is exactly an indication of the energy carried by
the waves.
If their amplitude decreases, then the waves are carrying less
energy. The brightness of the light decreases, AND the bulb
runs cooler, because it produces less heat.