No, x-rays travel at the same observable speed as any other electromagnetic wave including light.
Answer:
5.62 * 10^-13 moles per liter
Explanation:
The pH of a solution is the negative logarithm to base 10 of the concentration of hydrogen ions. What we simply do here is to input the information in the question into the equation:
pH=−log10[H⁺]
Here we know the pH but we do not know the concentration of the hydrogen ions.
12.25 = -log [H+]
log[H+] = -12.25
[H+] = 10^-12.25
[H+] = 5.62 * 10^-13 moles per liter
Answer:
ΔH = - 2020.57 kJ/mol
Explanation:
Given that :
mass of propanol = 1.685 g
the molar molar mass = 60 g/mol
Thus; the number of moles = mass/molar mass
= 1.685 g/60 g/mol
= 0.028 g/mol
However ;
ΔH = heat capacity C × Δ T
Given that:
The temperature increases from 298.00 K to 302.16 K.
Then ;
Δ T = 302.16 K - 298.00 K
Δ T = 4.16 K
heat capacity C = 13.60 kJ/K
∴
ΔH = 13.60 kJ/K × 4.16 K
ΔH = 56.576 kJ
The equation of the given reaction can be represented as :

Thus for 0.028 mol of heat liberated; ΔH = 56.576 kJ
For 1 mole of heat liberated now:
ΔH = 56.576 kJ/0.028 mol
ΔH = 2020.57 kJ/mol
SInce , Heat is liberated, the reaction undergoes an exothermic reaction thus;
ΔH = - 2020.57 kJ/mol
Moles He = 7.83 x 10^24 / 6.02 x 10^23 =13.0
<span>mass He = 13.0 mol x 4.00 g/mol = 52.0 g</span>
Answer:
<u>C) 4</u>
Explanation:
<u>The reaction</u> :
- C (s) + 2H₂ (g) ⇒ CH₄ (g)
12g 4g 16g
Hence, based on this we can say that : <u>2 moles of hydrogen gas are needed to produce 16g of methane.</u>
<u />
<u>For 32g of methane</u>
- Number of moles of H₂ = 32/16 × 2
- Number of moles of H₂ = <u>4</u>