Because of pollution from factories and other activities that release harmful gases into the air
The specific heat capacity is intensive, and does not depend on the quantity.
We can categorize a property of the compound as either intensive or extensive when defining a particular aspect of it. The extent of a drug or compound is a quality that is influenced by the sample size used. However, the intense property is independent of the quantity (we can say that it is independent on the amount of the sample used). One such example of an intensive property is density.
The specific heat capacity of a substance or a compound describes the amount of heat (in Joules) needed to increase the temperature of one gram of the substance by 1 unit.
The specific heat capacity is independent on the amount of substance used, therefore, it is classified as an intensive property of a substance. The specific heat capacity will not depend on the mass of the given substance and it will be a constant value for each substance.
So the specific heat capacity is intensive, and does not depend on the quantity, but the heat capacity is extensive, so two grams of liquid water have twice the heat capacitance of 1 gram, but the specific heat capacity, the heat capacity per gram, is the same, 4.184 (J/g.K).
To learn more about the specific heat capacity please click on the link brainly.com/question/16559442
#SPJ4
Answer:
6,2g of CO₂
Explanation:
Based on the reactions:
Li₂O(s) + H₂O(g) → 2LiOH(s)
LiOH(s) + CO₂(g) → LiHCO₃(s)
2,6g of Li₂O and 1,3g of H₂O are:
2,6g × ( 1mol / 29,88g) = 0,087 moles
1.3g × ( 1mol / 18,01g) = 0,072 moles
That means limiting reactant is H₂O. The moles produced of LiOH are:
0,072 moles of H₂O × ( 2mol LiOH / 1mol H₂O) =<em> 0,14 moles of LiOH</em>
Thus, the maximum CO₂ that can react are 0,14 moles of CO₂, in grams
0,14 moles CO₂ × (44,01g / 1mol) = <em>6,2g of CO₂</em>
I hope it helps!
<span>every column on the table represents a family that react similarly with other <span>elements.</span></span>